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Geometry and Quantum Mechanics
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Attempts for a geometrical interpretation of Quantum Theory were
made, notably the deBroglie-Bohm formulation. This was further re-
fined by Santamato who invoked Weyl’s geometry. However these at-
tempts left a number of unanswered questions. In the present paper we
return to these two formulations, in the context of recent studies invok-
ing fuzzy spacetime and noncommutative geometry. We argue that it
is now possible to explain the earlier shortcomings. At the same time
we get an insight into the geometric origin of the deBroglie wavelength
itself as also the Wilson-Sommerfeld Quantization rule.

1 Introduction

One of the fruitful approaches to Quantum Mechanics was the so called
deBroglie-Bohm hydrodynamical formulation [1], which originated with
Madelung and was developed by Bohm using deBroglie’s pilot wave
ideas. In this formulation, while the initial position coordinates in
a Quantum Mechanical trajectory, are random, the trajectories them-
selves are determined by classical mechanics. Quantum Mechanics en-
ters through an inexplicable Quantum potential which is again related
to the wave function. This has been a stumbling block in the acceptance
of the formulation.
Much later, Santamato further developed the deBroglie-Bohm formula-
tion by relating the mysterious Quantum potential to fundamental geo-
metric properties, by invoking Weyl’s geometry [2, 3, 4]. The net result
was that the mysterious Quantum effects were shown to be related to
the geometric structure of space specifically to the curvature. Unfortu-
nately, Weyl’s theory itself did not find favour [5]. Apart from anything
else, the theory sought to unify electromagnetism with gravitation, but
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on closer scrutiny, in this geometrical structure the two interactions were
actually independent and ad hoc entities as noted by Einstein himself
[6].
We will now reexamine all this in the light of recent developments in
fuzzy spacetime and noncommutative geometry, and argue that infact,
once the underlying fuzzyness is recognized, then the above apparent
difficulties disappear.

2 The deBroglie-Bohm Formulation and Extensions

Let us briefly review the above theory [7]. We start with the Schrodinger
equation
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In (1), the substitution
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Q ≡ − h̄2

2m
(∇2R/R) (5)

Using the theory of fluid flow, it is well known that (3) and (4) lead to
the Bohm alternative formulation of Quantum Mechanics. In this theory
there is a hidden variable namely the definite value of position while the
so called Bohm potential Q can be non local, two features which do not
find favour with physicists.
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Let us now briefly review Weyl’s ideas. He postulated that in addition
to the general coordinate transformations of General Relativity, there
were also gauge transformations which multiplied all components of the
metric tensor gµν , by an arbitrary function of the coordinates. So, the
line elements would no longer be invariant. In its modern version, the
metric tensor is normalized so that its determinant is given by [5],

|gµν | = −1,

while it now transforms as a tensor density of weight minus half, and not
as a tensor. This leads to the circumstance that there is now a covariant
derivative involving an arbitrary function of coordinates Φµ given by

Φσ = Γρ
ρσ, (6)

where the Γ’s denote the Christofell symbols. Weyl identified Φµ in (6)
with the electromagnetic potential. It must be noted that in Weyl’s
geometry, even in a Euclidean space there is a covariant derivative and
a non vanishing curvature R.
Santamato exploits this latter fact, within the context of the deBroglie-
Bohm theory and postulates a Lagrangian given by

L(q, q̇, t) = Lc(q, q̇, t) + γ(h̄2/m)R(q, t),

He then goes on to obtain the equations of motion like (1),(2), etc. by
invoking an Averaged Least Action Principle

I(t0, t1) = E

{∫ t

t0

L∗(q(t, ω), q̇(t, ω), t)dt
}

= minimum,

(7)

with respect to the class of all Weyl geometries of space with fixed metric
tensor. This now leads to the Hamilton-Jacobi equation

∂tS + Hc(q,∇S, t) − γ(h̄2/m)R = 0, (8)

and thence to the Schrodinger equation (in curvi-linear coordinates)

ıh̄∂tψ = (1/2m)
{
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+ [V − γ(h̄2/m)Ṙ]ψ = 0,
(9)
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As can be seen from the above, the Quantum potential Q is now given
in terms of the scalar curvature R.
We would now like to relate the arbitrary functions Φ of Weyl’s formula-
tion with a noncommutative spacetime geometry, as was shown recently.
Let us write the product dxµdxν of the line element,

ds2 = gµνddx
µdxν ,

as a sum of half its anti-symmetric part and half the symmetric part.
The line element now becomes (hµν + h̄µν)dxµdxν . This leads us back to
the Weyl geometry because the metric tensor h̄µν now becomes a tensor
density [8, 9].
In other words it is the underlying fuzzyness of space time as expressed
by

[dxµ, dxν ] ≈ l2 �= 0 (10)

l being a typical length scale ∼ 0(dxµ), that brings out Weyl’s geometry,
not as an ad hoc feature, but as a truly geometrical consequence, and
therefore also legitimises Santamato’s postulative approach of extending
the deBroglie-Bohm formulation.
At an even more fundamental level, this formalism gives us the rationale
for the deBroglie wave length itself. Because of the noncommutative
geometry in (10) space becomes multiply connected, in the sense that
a closed circuit cannot be shrunk to a point within the interval. Let
us consider the simplest case of double connectivity. In this case, if the
interval is of length λ, we will have, using (5),

Γ ≡
∫
c

m�V · d�r = h

∫
c

�∇S · d�r = h

∮
dS = mV πλ = πh (11)

whence

λ =
h

mV
(12)

In (11), the circuit integral was over a circle of diameter λ. Equa-
tion (12) shows the emergence of the deBroglie wavelength. This fol-
lows from the noncommutative geometry of space time, rather than the
physical Heisenberg Uncertainty Principle. Remembering that Γ in (11)
stands for the angular momentum, this is also the origin of the Wilson-
Sommerfeld quantization rule, an otherwise mysterious Quantum Me-
chanical prescription.



Geometry and Quantum Mechanics 397

3 Discussion

1. We would like to stress that Santamato’s treatment via Weyl’s geom-
etry, of the deBroglie-Bohm formulation was postulative (Cf. equations
(7), (8), (9)), while the Weyl formulation itself had not found favour for
its original motivation. Perhaps this was the reason why Santamato’s
formulation was not taken so seriously. On the other hand, we have
argued from the point of view of the noncommutative geometry (10),
which, after many decades, is now coming to be recognized in the con-
text of Quantum Superstring theory and Quantum Gravity.
2. It is well known that the so called Nelsonian stochastic process re-
sembles the deBroglie-Bohm formulation, with very similar equations
[10, 11]. However in this former case, both the position and velocity
are not deterministic because of an underlying Brownian process. In
this formulation the diffusion constant of the theory has to be identified
with,

ν =
h

m

These are the extra features in this stochastic formulation, rather than
the Quantum potential, which also appears in the equations. It has been
shown by the author [12, 7], that both the similar approaches infact can
be unified for relativistic velocities, by considering quantized vortices
originating from (11)of the order of the deBroglie, now the Compton
scale l. This immediately brings us back to the fuzzy noncommutative
geometry (10). At the same time it must be pointed out that the sup-
posedly unsatisfactory non local features of the Quantum potential Q
become meaningful in the above context at the Compton scale, within




