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n May 11 of last year, the late Richard

Feynman’s birthday, a stamp was ded-

icated to Feynman at the post office in

Far Rockaway, New York, Feynman’s

boyhood home. (At the same time, the
United States Postal Service issued three other
stamps honoring the scientists Josiah Willard Gibbs
and Barbara McClintock, and the mathematician
John von Neumann.)

The design of the stamp tells a wonderful story.
The Feynman diagrams on it show how Feynman’s
work, originally applicable to QED, for which he won
the Nobel Prize, was then later used to elucidate
the electroweak force. The design is meaningful to
both mathematicians and physicists. For mathe-
maticians, it demonstrates the application of dif-
ferential geometry. For physicists, it depicts the ver-
ification of QED; the application of the Yang-Mills
equations; and the establishment and experimen-
tal verification of the electroweak force, the first
step in the creation of the standard model. The
physicists used gauge theory to achieve this and
were for the most part unaware of the develop-
ments in differential geometry. Similarly, mathe-
maticians developed fiber bundle theory without
knowing that it could be applied to physics. We
should, however, remember that in general rela-
tivity, Einstein introduced geometry into physics.
And as we will relate below, Weyl did so for elec-
tromagnetism.
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General relativity sparked mathematicians’ in-
terest in parallel transport, eventually leading to
the development of fiber bundles in differential
geometry. After physicists achieved success using
gauge theory, mathematicians applied it to differ-
ential geometry. The story begins with Maxwell’s
equations. In this story the vector potential A goes
from being a mathematical construct used to fa-
cilitate problem solution in electromagnetism to
taking center stage by causing the shift in the in-
terference pattern in the Aharonov-Bohm solenoid
effect. As the generalized four-vector A, it be-
comes the gauge field that mediates the electro-
magnetic interaction and the electroweak and
strong interactions in the standard model of
physics; A, is understood as the connection on
fiber-bundles in differential geometry. The modern
reader would be unaccustomed to the form in
which Maxwell equations first appeared. They are
easily recognizable when expressed using vector
analysis in the Heaviside-Gibbs formulation.

Maxwell’s Equations

The equations used to establish Maxwell’s equations
in vacuo expressed in Heaviside-Lorentz rational-
ized units are:

1) V - E = p (Gauss’s law)
2) V-B=0 (No magnetic monopoles)
3) VxB=]J (Ampere’s law)

(4) V xE = —0B/dt (Faraday’s and Lenz’s law)
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where E and B are respectively the electric and
magnetic fields; p and J are the charge density and
electric current. The continuity equation which dic-
tates the conservation of charge,

(5) V-J+0p/ot =0,

indicates that Maxwell’s equations describe a local
theory, since you cannot destroy a charge locally
and recreate it at a distant point instantaneously.
The concept that the theory should be local is the
cornerstone of the gauge theory used in quantum
field theory, resulting in the Yang-Mills theory, the
basis of the standard model.

Maxwell realized that since
(6) V-VxB=0,

equation (3) is inconsistent with (5); he altered (3)
to read

(3’) V xB = J + 0E/ot

Thus a local conservation law mandated the addi-
tion of the 0E/dt term. Although equations (1), (2),
(3”) and (4) are collectively known as Maxwell’s
equations, Maxwell himself was responsible only
for (37).

Maxwell calculated the speed of a wave propa-
gated by the final set of equations and found its
velocity very close to the speed of light. He thus
hypothesized that light was an electromagnetic
wave. Since the curl of a vector cannot be calculated
in two dimensions, Maxwell’s equations indicate
that light, as we know it, cannot exist in a two-
dimensional world. This is the first clue that elec-
tromagnetism is bound up with geometry. In fact,
equation (6) is the vector analysis equivalent of the
differential geometry result stating that if g is a
p-form and dp is its exterior derivative, then d(df)
or d?p = 0.

Unlike the laws of Newtonian mechanics, Maxwell’s
equations carry over to relativistic frames. The non-
homogeneous equations, (1) and (3”), become

(7) OuFH = Jv,

while the homogeneous equations, (2) and (4), be-
come

(8) €*BY90,F,5 = 0,

where €*f¥9 js the Levi-Civita symbol, F*¥ = 0HAY
—0YAH, AC is the scalar potential, and A”’s (i = 1,
2, 3) the components of the vector potential A. Note
that both equations (7) and (8) are manifestly co-
variant. In a later section we will show that equa-
tion (8) is due to the principle d?w = 0, where w
is a p-form.

The following remark can be understood in dif-
ferential geometry terms by using the generalized
Stoke’s theorem: [y dw = [3 w, where w is a
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p-form and Mis a p+1 dimension oriented man-
ifold with boundary oM. For the purposes of this
article a manifold is simply a space that is locally
Euclidean. The remark is that equation (8), i.e.,
d? =0, is related to the principle that the bound-
ary of a region has no boundary, ie., 0°M = @.
This last principle once noticed, is geometrically ob-
vious. The fact that d2=0 complements
0°M = @ can be seen from [y, w = [ dw =
Jyy d?w = 0. Indeed Yang! notes that equation (8)
complements 02M = @ which, as we show later, is
in keeping with his championing of geometry’s in-
fluence on field theory.

Gauge Invariance

In a 1918 article Hermann Weyl? tried to combine
electromagnetism and gravity by requiring the the-
ory to be invariant under a local scale change of
the metric, i.e., gy — guve®™, where x is a 4-
vector. This attempt was unsuccessful and was
criticized by Einstein for being inconsistent with
observed physical results. It predicted that a vec-
tor parallel transported from point p to g would
have a length that was path dependent. Similarly,
the time interval between ticks of a clock would also
depend on the path on which the clock was trans-
ported. The article did, however, introduce

¢ the term “gauge invariance”; his term was Eich-
invarianz. It refers to invariance under his scale
change. The first use of “gauge invariance” in
English3 was in Weyl’s translation? of his famous
1929 paper.
the geometric interpretation of electromagnet-
ism.
the beginnings of nonabelian gauge theory. The
similarity of Weyl’s theory to nonabelian gauge
theory is more striking in his 1929 paper.

By 1929 Maxwell’s equations had been com-
bined with quantum mechanics to produce the
start of quantum electrodynamics. In his 1929 ar-
ticle®> Weyl turned from trying to unify electro-
magnetism and gravity to following a suggestion
originally thought to have been made by Fritz Lon-
don in his 1927 articleS and introduced as a phase
factor an exponential in which the phase « is pre-
ceded by the imaginary unit i, e.g., e*94*®_in the
wave function for the wave equations (for instance,
the Dirac equation is (iy#0, — m)y = 0). It is here
that Weyl correctly formulated gauge theory as a

LYang, C. N., Physics Today 6 (1980), 42.

2Weyl, Hermann, Sitzwingsber. Preuss. Akad., Berlin,
1919, p. 465.

3 See Jackson, J. D., and Okun, L. B., Rev. Mod. Phys. 73
(2001), 663.

4 Weyl, H., Proc. Natl. Acad. Sci. 15 (1929), 32.
5 Weyl, Hermann, Z. f Phys. 330 (1929), 56.
6London, Fritz, Z. f Phys. 42 (1927), 375.
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symmetry principle from which electromagnetism
could be derived. It was to become the driving
force in the development of quantum field theory.
In their 2001 Rev. Mod. Phys. paper, Jackson and
Okun point out thatin a 1926 paper’ predating Lon-
don’s, Fock showed that for a quantum theory of
charged particles interacting with the electromag-
netic field, invariance under a gauge transforma-
tion of the potentials required multiplication of the
wave function by the now well-known phase fac-
tor. Many subsequent authors incorrectly cited the
date of Fock’s paper as 1927. Weyl’s 1929 article—
along with his 1918 one, and Fock’s and London’s,
and other key articles—appears in translation in a
work by O’Raifeartaigh® with his comments. Yang?
discusses Weyl’s gauge theory results as reported
by Paulil? as a source for Yang-Mills gauge theory
(although Yang did not find out until much later
that these were Weyl’s results):

... I was very much impressed with the
idea that charge conservation was re-
lated to the invariance of the theory
under phase changes and even more
impressed with the fact the gauge-
invariance determined all the electro-
magnetic interactions....

For the wave equations to be gauge invariant, i.e.,
have the same form after the gauge transformation
as before, the local phase transformation
Y(x) — P(x)et9*® has to be accompanied by the
local gauge transformation

9) Ay~ Ay — g o).

(The phase and gauge transformations are local be-
cause «(x) is a function of x.) This dictates that the
0O, in the wave equations be replaced by 0, + igA,
in order for the 0, x(x) terms to cancel each other
out. Thus gauge invariance determines the type of
interaction; here, the inclusion of the vector po-
tential. This is called the gauge principle, and A,
is called the gauge field or gauge potential. Gauge
invariance is also called gauge symmetry. In elec-
tromagnetism A is the space-time vector potential
representing the photon field, while in electroweak
theory A represents the intermediate vector bosons
W= and Z° fields; in the strong interaction, A rep-
resents the colored gluon fields. The fact that the
g in w(x)et4*® must be the same as the q in
Oy +iqA, to insure gauge invariance means that the

"Fock, V., Z. Phys. 39 (1926), 226.

8 O'Raifeartaigh, L., The Dawning of Gauge Theory, Prince-
ton University, 1997.

9 Yang, C. N., “Hermann Weyl’s contribution to physics”,
Hermann Weyl (ed. Chandrasekharan, K.), Springer-
Verlag, 1980.

10 pauli, w., Rev. Mod. Phys. 13 (1941), 203.
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charge q must be conserved.!! Thus gauge invari-
ance dictates charge conservation. By Noether’s
theorem, a conserved current is associated with a
symmetry. Here the symmetry is the nonphysical
rotation invariance in an internal space called a
fiber. In electromagnetism the rotations form the
group U(1), the group of unitary 1-dimensional
matrices. U(1) is an example of a gauge group, and
the fiber is S, the circle.

A fiber bundle is determined by two manifolds
and the structure group G which acts on the fiber:
the first manifold, called the total space E, consists
of many copies of the fiber F—one for each point
in the second manifold, the base manifold M which
for our discussion is the space-time manifold. The
fibers are said to project down to the base mani-
fold. A principal fiber bundle'? is a fiber bundle in
which the structure group G acts on the total space
Ein such a way that each fiber is mapped onto it-
self and the action of an individual fiber looks like
the action of the structure group on itself by left-
translation. In particular, the fiber Fis diffeomor-
phic to the structure group G.

The gauge principle shows how electromagnet-
ism can be introduced into quantum mechanics.
The transformation 0, — 0, + iqA, is also called
the minimal principle and the operation o, + igA,
is the covariant derivative of differential geometry,
D =d +igA, where A is the connection on a fiber
bundle. A connection on a fiber bundle allows one
to identify fibers over points b; € M via parallel
transport along a path y from b, to b,. In general,
the particular identification is path dependent. It
turns out that the parallel transport depends only
on the homotopy class of the path if and only if
the curvature of the connection vanishes identically.
Recall that two paths are homotopic if one can be
deformed continuously onto the other keeping the
end points fixed.

In his 1929 paper Weyl also includes an ex-
pression for the curvature Q of the connection A,
namely, Cartan’s second structural equation, which
in modern differential geometry notation is
Q =dA + A A A. Tt is the same form as the equa-
tion used by Yang and Mills, which in modern no-
tation is Q = dA + % [A, A]. Since the transforma-
tions in (9) form an abelian group U(1), the
space-time vector potential A commutes with itself.
Thus in electromagnetism the curvature of the
connection A is just

(10) Q=dA

H See section 2.6 of Aitchison, L. J. R., and Hey, A. J. G.,
Gauge Theories in Particle Physics, Adam Hilger, 1989.

12 giving these definitions, we restrict our attention to
the smooth manifolds, which are adequate for our dis-
cussion.
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which, as we will see in the next section, is the field
strength F defined as F = dA.

Differential Geometry

Differential geometry—principally developed by
Levi-Civita, Cartan, Poincaré, de Rham, Whitney,
Hodge, Chern, Steenrod and Ehresmann—Iled to
the development of fiber bundle theory, which is
used in explaining the geometric content of
Maxwell’s equations. It was later used to explain
Yang-Mills theory and to develop string theory.
The successes of gauge theory in physics sparked
mathematicians’ interest in it. In the 1970s Sir
Michael Atiyah initiated the study of the mathe-
matics of the Yang-Mills equations; and in 1983 his
student Simon Donaldson, using Yang-Mills theory,
discovered a unique property of smooth mani-
folds!3 in R*. Michael Freedman went on to prove
that there exist multiple exotic differential struc-
tures only on R*. It is known that in other dimen-
sions the standard differential structure on R" is
unique.

In 1959 Aharonov and Bohm!# established the
primacy of the vector potential by proposing an
electron diffraction experiment to demonstrate a
quantum mechanical effect: A long solenoid lies be-
hind a wall with two slits and is positioned between
the slits and parallel to them. An electron source
in front of the wall emits electrons that follow two
paths: one path through the upper slit and the
other path through the lower slit. The first electron
path flows above the solenoid, and the other path
flows below it. The solenoid is small enough so that
when no current flows through it, the solenoid
does not interfere with the electrons’ flow. The
two paths converge and form a diffraction pattern
on a screen behind the solenoid. When the current
is turned on, there is no magnetic or electric field
outside the solenoid, so the electrons cannot be
affected by these fields. However, there is a vector
potential A, and it affects the interference pattern
on the screen. Thus Einstein’s objection to Weyl’s
1918 paper can be understood as saying that there
is no Aharonov-Bohm effect for gravity. Because of
the necessary presence of the solenoid, the upper
path cannot be continuously deformed into the
lower one. Therefore, the two paths are not ho-
motopically equivalent.

The solution of (1/2m)(—ihV — gA/c)’>Y+
qVy = Ey, the time-independent Schrodinger’s
equation for a charged particle, is
L,Uo(x)e("f”fh)fS(X)A(”)dS  where y(x) is the solution
of the equation for A equals zero and s(x) repre-
sents each of the two paths. Here c is the speed of
light, and # is Plank’s constant divided by 27r. The

1:J;Donaldson, S. K., Bull. Amer. Math. Soc. 8 (1983), 81.
14 Aharonov, Y., and Bohm, D., Phys. Rev. 115 (1959), 485.
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interference term in the superposition of the so-
Iution for the upper path and of that for the lower
path produces a difference in the phase of the
electrons’ wave function called a phase shift. Here
the phase shift is (q/ch) § A(x)dx. By Stoke’s theo-
rem, the phase shift is (q/ch)¢, where ¢ is the
magnetic flux in the solenoid, [ B - dS. Mathemat-
ically, their proposal corresponds to the fact that
even if the curvature (the electromagnetic field
strength) of the connection vanishes (as it does out-
side the solenoid), parallel transport along non-
homotopic paths can still be path-dependent, pro-
ducing a shift in the diffraction pattern.

Chambers!> performed an experiment to test the
Aharonov and Bohm (AB) effect. The experiment,
however, was criticized because of leakage from the
solenoid. Tonomural® et al. performed beautiful ex-
periments that indeed verified the AB prediction.
Wu and Yang!” analyzed the prediction of
Aharonov and Bohm and comment that different
phase shifts (q/ch)¢ may describe the same in-
terference pattern, whereas the phase factor e!4/cn¢
provides a unique description as we now show. The
equation e>™ = 1, where N is an integer, means
that

e(iq/ch)(d)+21TNch/q) — e(iq/ch)cbeZTrNi — e(iq/ch)¢_

Thus flux of ¢, ¢ + 21rch/q, P + 41tch/q... all de-
scribe the same interference pattern. Moreover,
they introduced a dictionary relating gauge theory
terminology to bundle terminology. For instance,
the gauge theory phase factor corresponds to the
bundle parallel transport, and as we shall see, the
Yang-Mills gauge potential corresponds to a con-
nection on a principal fiber bundle.

Let’s see how by using the primacy of the four-
vector potential A, we can derive the homogeneous
Maxwell’s equations from differential geometry
simply by using the gauge transformation. Then we
will get the nonhomogeneous Maxwell’s equations
using the fact that our world is a four-dimensional
(space-time) world.

We will also show that Maxwell’s equations are
invariant under the transformations A, — A, +
0, x(x), or expressed in differential geometry terms,
A - A+da®x). We want x(x) to vanish when a
function of A is assigned to the E and B fields.
Taking the exterior derivative of A will do this,
since d?«(x) = 0. Set A to be the 1-form A =
—Apdt + Aydx + A,dy + A,dz. Evaluating dA and
realizing that the wedge product dx’ A dx/ =
—dx/ A dx! and therefore dx/ A dx/ = 0, where dx°
is dt, dx! is dx, dx? is dy and dx? is dz, produces
a 2-form consisting of terms such as (0xAp+

15 Chambers, R. G., Phys. Rev. Lett. 5 (1960), 3.

16 Tonomura, Akira, et. al., Phys. Rev. Lett. 48 (1982), 1443;
and Phys. Rev. Lett. 56 (1986), 792.

Y7Wwu, T. T, and Yang, C. N., Phys. Rev. D 12( 1975), 3845.
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O0tAy)dtdx and (0yA, — 0,Ay)dxdy. When all the
components are evaluated, these terms become
respectively VAg + 0A/9; and V x A. The analysis
up to now has been purely mathematical. To give
it physical significance we associate these terms
with the field strengths B and E. In electromagnetic
theory, two fundamental principles are V - B = 0
(no magnetic monopoles) and for time-indepen-
dent fields E = —V A, (the electromagnetic field is
the gradient of the scalar potential), so consistency
dictates that in the time-dependent case, we assign
the two terms to B and E respectively:

(11) B=VxA and E=-VA, - JA.

The gradient, curl, and divergence are spatial op-
erators—they involve the differentials dx, dy, and
dz. The exterior derivative of a scalar is the gradi-
ent, the exterior derivative of a spatial 1-form is the
curl, and the exterior derivative of a spatial two-
form is the divergence. In the 1-form A, the -Aqdt
is a spatial scalar and when the exterior derivative
is applied gives rise to VA,. The remaining terms
in A are the coefficients of dx’ constituting a spa-
tial 1-form and thus produce V x A.

We define the field strength F as F = dA, and
from equation (10) we see that the field strength
is the curvature of the connection A. Using the
equations in (11) and the 2-form dA, we get

F = Exdxdt + E,dydt + E,dzdt

(12) + Bydydz + B,dzdx + Baxdy

where, for example, dxdt is the wedge product
dx A dt. Since d?A =0

(13) dF = 0.

Evaluating dF gives the homogeneous Maxwell’s
equations. In equation (12), since the E part is a spa-
tial 1-form, when the exterior derivative is applied
it produces the V x E part of Maxwell’s homoge-
neous equations. Since the B part of equation (12)
is a spatial 2-form, it results in the V - B part. Since
dF = 0, F is said to be a closed 2-form.

To get the expression for the nonhomogeneous
Maxwell’s equations, i.e., the equivalent of equation
(7), we use

(14) J=pdt + Jydx + J,dy + J,dz

and calculate the Hodge dual using the Hodge star
operator. The Hodge duals are defined!® by
*Fo([g = 1/260([;},5Fy5 and *Jo([;y = Eaﬁy(sfts. The
Hodge star!? operates on the differentials in equa-
tions (12) and (14) using *(dx!dt) = dx/dx* and
#(dx/dx¥) = —dx'dt, where i, j, and k refer to x, y,
and z and are taken in cyclic order. The metric used

18Misner, C. W., Thorne, K. S., and Wheeler, J. A., Gravi-
tation, Freeman, San Francisco 1973.

19Flanders, H., Differential Forms, Academic Press, 1963.
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is (-+++). Thus the Hodge star takes a spatial 1-form
dx'dt into a spatial 2-form and vice versa with a
sign change.

The nonhomogeneous Maxwell’s equations are
then expressed by

(15) d*F = 0 (source-free)

(15")

where the 2-form *F and the 3-form *J are respec-
tively the Hodge duals of F and J. *F and *J are de-
fined as

d=F = =] (non-source-free)

*F = —B,dxdt — B, dydt — B,dzdt

(16) + Exdydz + E,dzdx + E,dxdy

*xJ = pdxdydz — J,dtdydz

(17) _ J,dtdzdx — J,dtdxdy

Thus the Hodge star reverses the roles of E and B
from what they were in F. In *F the coefficient of
the spatial 1-form is now —B, which will produce
the curl in the nonhomogeneous Maxwell’s equa-
tions; and the coefficient of the spatial 2-form is
E, which will produce the divergence. In R" the
Hodge star operation on a p-form produces an
(n-p)-form. Thus the form of Maxwell’s equations
is dictated by the fact that we live in a four-
dimensional world. When the 1-form A undergoes
the local gauge transformation A — A + dx(x), dA
remains the same, since d2« = 0. Since B and E are
unchanged, Maxwell’s theory is gauge invariant.

The Dirac and Electromagnetism
Lagrangians

To prepare for the discussion of the Yang-Mills
equations, let’s investigate the Dirac and Electro-
magnetism Lagrangians. The Dirac equation is

(18) (iyoy — myy =0,

where the speed of light, ¢, and Plank’s constant
h are set to one. Its Lagrangian density is

(19) £ = @liy"d, - myy.

The Euler-Lagrange equations minimize the action
Swhere S = [ £dx. Using the Euler-Lagrange equa-
tion where the differentiation is with respect to (/,
ie.,

(20) %z — 55 =0,

yields equation (18).

The same gauge invariant argument used in the
“Gauge Invariance” section applies here. In order
for the Lagrangian to be invariant under the phase
transformation @(x) — W(x)e*9%® this transfor-
mation has to be accompanied by the local gauge
transformation A, — A, — g '0,x(x) and 0, has
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to be replaced by 0, + ieA,. The Lagrangian den-
sity becomes

(21) L=g(iy*o, —my —e@Qy"QA,.

The last term is the equivalent of the interaction en-
ergy with the electromagnetic field, j*A,. In order
for the Euler-Lagrangian equation differentiated
with respect to A, to yield the inhomogeneous
Maxwell equation (7), we must add —(};)(FW)Z, get-
ting

(22) £ = @iy d, — my — ey WA, — (3)(Ew).
The Euler-Lagrange equation yields
(23) OuFH = e@yvy,

which equals JV. Note that the gauge field A, does
not carry a charge and that there is no gauge field
self-coupling, which would be indicated by an
[A4, Ay] term in (23). The Lagrangian density does
not yield the homogeneous Maxwell equations.
They are satisfied trivially, because the definition
of F* satisfies the homogeneous equations auto-
matically.?°

From this it is apparent that the Lagrangian den-
sity for the electromagnetic field alone,

(24) L=—JrA, — (DFn),

yields all of Maxwell’s equations.
In differential geometry, if j = 0, this Lagrangian
density becomes

(25) L =—3F A %F.

The Yang-Mills Theory

The Yang-Mills theory incorporates isotopic spin
symmetry introduced in 1932 by Heisenberg, who
observed that the proton and neutron masses are
almost the same (938.272 MeV versus 939.566 MeV
respectively). He hypothesized that if the electro-
magnetic field were turned off, the masses would
be equal and the proton and neutron would react
identically to the strong force, the force that binds
the nucleus together and is responsible for the
formation of new particles and the rapid (typical
lifetimes are about 1072° seconds) decay of others.
In a nonphysical space (also known as an internal
space) called isospin space, the proton would have
isospin up, for instance, and the neutron, isospin
down but other than that they would be identical.
The wave function for each particle could be trans-
formed to that for the other by a rotation using the
spin matrices of the nonabelian group SU(2). Be-
cause of charge independence, the strong interac-
tions are invariant under rotations in isospin space.
Since the ratio of the electromagnetic to strong
force is approximately «, where « = e?/4mhc =

20 rackson, J. D., Classical Electrodynamics, 3rd ed., John
Wiley and Sons, 1998.
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1/137, for a good approximation we can neglect the
fact that the electromagnetic forces break this sym-
metry. By Noether’s theorem, if there is a rota-
tional symmetry in isospin space, the total iso-
topic spin is conserved. This hypothesis enables us
to estimate relative rates of the strong interactions
in which the final state has a given isospin. The spin
matrices turn out to be the Pauli matrices o;. The
theory just described is a global one; i.e., the iso-
topic spin rotation is independent of the space-time
coordinates, and thus no connection is used. We
will see that Yang and Mills?! elevated this global
theory to a local one. In 1954 they proposed ap-
plying the isospin matrices to electromagnetic the-
ory in order to describe the strong interactions. Ul-
timately their theory was used to describe the
interaction of quarks in the electroweak theory??
and the gluons fields of the strong force. In the next
section we will give an example using the up quark
u, which has a charge of %e, and the down
quark d, which has a charge of -%e.

We have seen that the field strength (which is
also the curvature of the connection on the fiber)
isgivenby F = dA + A A A.In electromagnetism A
is a 1-form with scalar coefficients for dx, so A A A
vanishes. If, however, the coefficients are non-
commuting matrices, A A A does not vanish and
provides for gauge field self-coupling. Yang and
Mills formulated the field strength using the letter
B instead of A, so we will follow suit. The field is

(26) Fyv = (04By — 0vBy) + ie(B,B, — ByBy)

or equivalently F,, = (0,B, — 0,B,) + i€[B,, B, ],
where B is the connection on a principal fiber bun-
dle, i.e., the gauge potential and where € is the
coupling constant analagous to g in (9). Therefore,
as opposed to the electromagnetic field strength
which is linear, their field strength is nonlinear.
They proposed using a local phase,

(27) (II(X) — (I/(x)e*ieo(j(x)gj,

where o/ are the Pauli matrices and j goes from 1
to 3. Thus the isotopic spin rotation is space-time
dependent, i.e., local. The Pauli matrices do not com-
mute: D .
15, 5= i e

Since B, = bl,0; or B, = b - G (where b/, is called the
isotopic spin vector gauge field), the four-
vectors By, and B, in (26) do not commute leading
to nonabelian theory. The purpose of the Pauli
spin matrices in the connection B is to rotate the
particles in isospin space so that they retain their
identities at different points in R*. Equation (26)
can be rewritten so that the curvature is defined

2lyang, C. N., and Mills, R. L., Phys. Rev. 96 (1954), 91.

22 The weak and electromagnetic forces are the two man-
ifestations of the electroweak force.
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asF =dB + % i€[B,B]. As opposed to the Maxwell’s
equations case, the exterior derivative of the cur-
vature dF does not equal zero because of the com-
mutator in the expression for the curvature. Thus
the exterior derivative for the 2-form F has to be
altered to include the connection B in order to gen-
eralize the homogeneous Maxwell’s equations.
The Yang-Mills Lagrangian

(28) L =gliy"(Dy — my — (5)Tr(FyF*)

is invariant under the gauge transformation for
the covariant derivative given as

(29) D, = 0, —i€By.
The connection B, transforms as
(30) B, — By + €10, — i[ex, Byl,

the fiber is the sphere S?, and the gauge group is
SU(_2).

Since there are three components of the vector
gauge field bi, there are three vector gauge fields
representing three gauge particles having spin one.
They were later identified as the intermediate vec-
tor bosons W* and Z° which mediate the elec-
troweak interactions. The fact that there are three
gauge particles is dictated by the fact that the
gauge field is coupled with the three Pauli spin ma-
trices. Also, since the charges of the up quark and
down quark differ by one, the gauge field particles
that are absorbed and emitted by them in quark-
quark interactions can have charges of +1 or zero.
It is astonishing that Yang and Mills in their 1954
paper predicted the existence of the three inter-
mediate vector bosons.

Independently of Yang and Mills and slightly
after them, Shaw and Utiyama separately developed
nonabelian gauge theories similar to the Yang-Mills
one. Utiyama’s theory also included a gauge the-
ory for gravity and electromagnetism. Their pa-
pers are included in O’Raifeartaigh’s The Dawning
of Gauge Theory.

The gauge particles predicted by the Lagrangian
(28) have zero mass, since any mass term added
to (28) would make the Lagrangian noninvariant
under a gauge transformation. So the force asso-
ciated with the particles would have infinite range,
as the photons of the electromagnetic interaction
do. Of course the weak force (the force responsi-
ble for particles decaying slowly; typically their
lifetimes are about 10~!° seconds or much less) and
strong nuclear force are short range. This dis-
crepency was corrected some years later by the in-
troduction of spontaneous symmetry breaking in
the electroweak SU(2) x U(1) theory of Weinberg,
Salam and Glashow (WSG) using the Higgs mecha-
nism. The WSG theory, which explains the electro-
magnetic and weak forces, predicts the mass of the
W* (80.37 £0.03 GeV) and Z° (92 + 2 GeV)
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intermediate vector bosons, where GeV represents
a billion electron volts. The W= was discovered?3
in 1983 (its mass is now reported at 80.425 Gev +
0.033 GeV), and later that year the Z° was discov-
ered?* (its mass is now reported at a mass of 91.187
+ 0.002 GeV).

The Euler-Lagrange equations for equation (28)
give the Dirac equation

(31) yH(©u — ieB)y + my = 0,
and also the vector equation for the vector field F,
namely

(32) OHF,, — i€[B*,Fyy] = —ie@y,p = -],

which, if it weren’t for the commutator, is the same
form as the nonhomogeneous four-vector Maxwell
equation. The commutator causes the gauge par-
ticles to interact with themselves.

The effect of these equations is explained by
't Hooft,>> who with Veltman proved the renor-
malizability of Yang-Mills theories:

...The B quanta would be expected to
be exchanged between any pair of par-
ticles carrying isospin, generating not
only a force much like the electro-
magnetic force, but also a force that ro-
tates these particles in isospin space,
which means that elementary reactions
envolving the transmutation of particles
into their isospin partners will result. A
novelty in the Yang-Mills theory was
that the B quanta are predicted to in-
teract directly with one another. These
interactions originate from the com-
mutator term in the F, field [equation
(32)], but one can understand physi-
cally why such interactions have to
occur: in contrast with ordinary pho-
tons, the Yang-Mills quanta also carry
isospin, so they will undergo isospin
transitions themselves, and further-
more, some of them are charged, so the
neutral components of the Yang-Mills
fields cause Coloumb-like interactions
between these charged particles.

So the Yang-Mills equations indicate that, for in-
stance, for the up quark-down quark doublet, the
W~ generates a force that rotates the d into the u
in isospin space exhibited by the transition
d — u + W~. The commutator in equation (32) is re-
sponsible for interactions like W - W + Z

23 Arnison, G., et al., Phys. Lett. 122B (1983), 103.
24 Arnison, G., et. al., Phys. Lett. 126B (1983), 398.

25t Hooft, Gerardus, ed., 50 Years of Yang-Mills Theory,
World Scientific, 2005.
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occurring,’® and the W can radiate, producing a
photonin W - W + y.

The Yang-Mills field strength contribution (also
called the kinetic term) to the differential geome-
try Lagrangian density, where k is a constant is:

(33) L = —KkTr(F A xF).

The Euler-Lagrange equations produce dgF = 0
(it is called the Bianchi Identity, which is purely geo-
metric), and in the absence of matter fields the field
equation dg * F = 0, where dj is the exterior co-
variant derivative. These are the Yang-Mills equa-
tions in compact form.

The Feynman Stamp

In QED after Schwinger, Tomonaga and Feynman
addressed the singularities produced by the self-
energy of the electron by renormalizing the theory.
They were then exceedingly successful in predict-
ing phenomena such as the Lamb shift and anom-
alous magnetic moment of the electron.

Feynman introduced?’ schematic diagrams,
today called Feynman diagrams, to facilitate cal-
culations of particle interaction parameters. Ex-
ternal particles, represented by lines (edges) con-
nected to only one vertex are real, i.e., observable.
They are said to be on the mass shell, meaning their
four-momentum squared equals their actual mass,
i.e., m?> = E? — p?. Internal particles are represented
by lines that connect vertices and are therefore in-
termediate states—that is why they are said to me-
diate the interaction. They are virtual and are con-
sidered to be off the mass shell. This means their
four-momentum squared differs from the value
of their actual mass. This is done so that four-
momentum is conserved at each vertex. The ra-
tionale for this difference is the application of the
uncertainty principle AE - At = h. Since At, the
time spent between external states is very small for
that short time period, AE, and thus the difference
between the actual and calculated mass can be
large. In the following Feynman diagrams, the time
axis is vertical upwards.

The diagram on the upper-left of the stamp (Fig-
ure 1) is a vertex diagram and as such represents
a component of a Feynman diagram. It illustrates
the creation of an electron-positron pair from a pho-
ton, y; it is called pair production. The y is repre-
sented by a wavy line. The Feynman-Stuckelberg in-
terpretation of negative-energy solutions indicates
that here the positron, the electron’s antiparticle,
which is propagating forward in time, is in all ways
equivalent to an electron going backwards in time.
If all the particles here were external, the process

26 This is indicated in Figure 1 of the Yang-Mills paper. See
also F. Halzen and A. D. Martin, Quarks and Leptons,
John Wiley & Sons, 1984, p. 343.

27 Feynman, R. P., Phys. Rev. 76 (1949), 769.
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would not conserve energy and momentum. To
see this you must first remember that since the pho-
ton has zero mass due to the gauge invariance of
electromagnetic theory, its energy and momentum
are equal. Thus S, which equals %, has the value 1;
but 8 =7, so that the photon’s velocity is always
¢, the speed of light. In the electron-positron cen-
ter of mass frame (more aptly called the

center of momentum frame, since the
net momentum of all the particles is
zero there), the electron and positron
momenta are equal and are in opposite
directions. The photon travels at the
speed of light, and therefore its mo- -
mentum cannot be zero; but there is no sl |ﬂ|
particle to cancel its momentum, so the i :

interaction cannot occur. (For it to occur

requires a Coloumb field from anearby Figure 1. A pair
nucleus to provide a virtual photon that Production vertex.

transfers momentum, producing a nu-

clear recoil.) Therefore the y in the di-
agram is internal. Its mass is off the
mass shell and cannot equal its nor-
mal value, i.e., zero.

The diagram on the lower-left of the
stamp (Figure 2) is also a vertex diagram
and represents an electron-positron
pair annihilation producing a y. Again,

if all the particles are external, conser-
vation energy and momentum prohibit
the reaction from occurring; therefore

Figure 2. A pair
annihilation vertex.

the y must be virtual.

The diagram on the bottom to the
right of Feynman (Figure 3) was meant
to represent an electron-electron scat-
tering with a single photon exchange.
This is called Meoller scattering. (It can,
however, represent any number of in-
teractions exchanging a photon.) The

diagram represents the t-channel of
Moller scattering; there is another dia-

u-channel contribution, where u, t and scattering.
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Figure 3. Electron-
gram not shown here representing the electron (Moller)



another variable s are called the Mandelstam vari-
ables. They are used in general to describe 2-body
— 2-body interactions. If you rotate the diagram
in Figure 3 by 90°, you have the s-channel diagram
for electron-positron scattering, called Bhabha scat-
tering, shown in Figure 4 but not on the stamp. Here

an electron and positron annihilate,

producing a virtual photon which in
turn produces an electron-positron pair.
There is also a t-channel contribution
to Bhabha scattering. The cross-section
for Bhabha scattering can be easily ob-
tained from the one for Mgller scatter-
ing by interchanging the s and u in the

Figure 4. Electron-
positron (Bhabha)
scattering.

Cross-section expression in a process
called crossing. Small angle Bhabha scat-
tering is used to test the luminosity in
e*-e~ colliding beam accelerators.

To the right of the Moller scattering
diagram is a vertex correction to elec-

tron scattering, shown in Figure 5,
where the extra photon forms a loop.
It is used to calculate both the anom-
alous magnetic moment of the electron
and muon, also the anomalous mag-
netic moment contribution to the Lamb
shift.2® The other two contributions to

Figure 5. Radiative
correction.

the Lamb shift are the vacuum polar-
ization and the electron mass renor-

malization. The Lamb shift explains the
splitting in the spectrum of the 2§ 1 and

2P; levels of hydrogen, whereas Dirac
theory alone incorrectly predicted that
U these two levels should be degenerate.
The low-order solution of the Dirac
d equation predicts a value of 2 for the
g-factor used in the expression for the
magnetic moment of the electron. The

Figure 6. A flavor non-
conserving transition

752

vertex correction shown in Figure 5,
however, alters the g-factor, producing
an anomalous magnetic moment con-
tribution, written as %. When this and
higher-order contributions are included,
the calculated value of gzi for the elec-
tron is 1159 652 460(127)(75) x 1072 and the ex-
perimental value is 1159 652 193(10) x 107'2,
where the numbers in parenthesis are the errors.
This seven-significant figure agreement is a spec-
tacular triumph for QED. We need not emphasize
that the calculations for all these diagrams use the
gauge principal for quantum electrodynamics.
The other diagrams on the stamp are all vertex
diagrams and show how Feynman’s work, originally
applicable to QED, was then later used to elucidate
the electroweak force. This is exemplified on the
stamp by flavor-changing transitions, e.g.,

vertex.

28 See, for instance, Griffith, David, Introduction to Ele-
mentary Particles, John Wiley and Sons, 1987, p. 156.

NOTICES OF THE AMS

d - W~ +u shown in Figure 6, and flavor-con-
serving transitions, e.g., d — Z° + d of the elec-
troweak force—the u and d quarks have different
values of flavor. The process in Figure 6 occurs for
instance in 8 decay, where a neutron (udd) decays
into a proton (udu) and electron and an antineu-
trino. What happens is that the transition
d — u+ W~ corresponds to a rotation in isospin
space. This rotation is caused by the virtual W~
which mediates the decay. It in turn decays into an
electron and an antineutrino. The calculations for
these transitions all use the Yang-Mills theory. Al-
though quarks are confined in hadrons (particles
that undergo strong interactions like the proton and
neutron), they are free to interact with the inter-
mediate vector bosons.

Who Designed the Stamp?

Feynman’s daughter, Michelle, was sent a provi-
sional version of the stamp by the United States
Postal Service and advised on the design of it by,
among others, Ralph Leighton, coauthor with
Richard Feynman of two popular books, and Cal-
Tech’s Steven Frautschi and Kip Thorne. Frautschi
and Leighton edited the Feynman diagrams, and
Frautschi rearranged them and composed the final
design. The person who chose the original Feynman
diagrams that form the basis for the stamp re-
mains a mystery.
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