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The design of a commemorative stamp tells a wonderful story. The Feynman diagrams on it show how 
Feynman’s work, originally applicable to QED, for which he won the Nobel Prize, was then later used to 
elucidate the electroweak force. The design is meaningful to both mathematicians and physicists. For 
mathematicians, it demonstrates the application of differential geometry. For physicists, it depicts the 
verification of QED; the application of the Yang-Mills equations; and the establishment and experimental 
verification of the electroweak force, the first step in the creation of the standard model. The physicists 
used gauge theory to achieve this and were for the most part unaware of the developments in 
differential geometry. Similarly, mathematicians developed fiber bundle theory without knowing that it 
could be applied to physics. We should, however, remember that in general relativity, Einstein 
introduced geometry into physics. And as we will relate below, Weyl did so for electromagnetism. 
 
General relativity sparked mathematicians’ interest in parallel transport, eventually leading to 
the development of fiber bundles in differential geometry. After physicists achieved success using 
gauge theory, mathematicians applied it to differential geometry. The story begins with Maxwell’s 
equations. In this story the vector potential A goes from being a mathematical construct used to 
facilitate problem solution in electromagnetism to taking center stage by causing the shift in the 
interference pattern in the Aharonov-Bohm solenoid effect. As the generalized four-vector Aμ , it 
becomes the gauge field that mediates the electromagnetic interaction and the electroweak and 
strong interactions in the standard model of physics; Aμ is understood as the connection on 
fiber-bundles in differential geometry. 
 
 Maxwell’s Equations 

Since the curl of a vector can not exist in two dimensions, Maxwell’s equations suggest that light as we 

know it, cannot exist in a 2-D world. This is the first clue that electromagnetism is bound up with 

geometry. 

Gauge Invariance 

In a 1918 article Hermann Weyl tried to combine electromagnetism and gravity by requiring the theory 

to be invariant under a local scale change. 

Although this article was unsuccessful, it did introduce the concept of “gauge invariance”; his term was 

Eichinvarianz. His paper also introduced the geometric interpretation of electromagnetism and the 

beginnings of nonabelian gauge theory. The similarity of Weyl’s theory to nonabelian gauge theory is 

more striking in his 1929 paper. By 1929 Maxwell’s equations had been combined 
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with quantum mechanics to produce the start of quantum electrodynamics. In his 1929 article Weyl 

turned from trying to unify electromagnetism and gravity to introducing as a phase factor an 

exponential in which the phase α is preceded by the imaginary unit i, e.g., e+iqα(x), in the 

wave function for the wave equations (for instance, the Dirac equation is (iγμ∂μ −m)ψ = 0). It is here 
that Weyl correctly formulated gauge theory as a symmetry principle from which electromagnetism 
could be derived. It was to become the driving force in the development of quantum field theory. 
Weyl’s gauge theory appears to be the basis of Yang-Mill’s gauge theory. 
 
Thus gauge invariance determines the type of interaction; here, the inclusion of the vector potential. 
This is called the gauge principle, and Aμ is called the gauge field or gauge potential. Gauge invariance is 
also called gauge symmetry. In electromagnetism A is the space-time vector potential representing the 
photon field, while in electroweak theory A represents the intermediate vector bosons W± and Z0 fields;  
in the strong interaction, A represents the colored gluon fields. The fact that the q in ψ(x)e+iqα(x) must be 
the same as the q in ∂μ + iqAμ to insure gauge invariance means that the charge q must be conserved. 
 
Thus gauge invariance dictates charge conservation. By Noether’s theorem, a conserved current is 
associated with a symmetry. Here the symmetry is the nonphysical rotation invariance in an internal 
space called a fiber. In electromagnetism the rotations form the group U(1), the group of unitary 1-
dimensional matrices. U(1) is an example of a gauge group, and the fiber is S1, the circle. 
 
For the wave equations to be gauge invariant, i.e., have the same form after the gauge transformation 
as before, the local phase transformation ψ(x) → ψ(x)e+iqα(x) has to be accompanied by the local gauge 

transformation 
 
(9) Aμ → Aμ − q−1∂μα(x). 

 
A fiber bundle is determined by two manifolds and the structure group G which acts on the fiber: the 
first manifold, called the total space E, consists of many copies of the fiber F—one for each point in the 
second manifold, the base manifold M which for our discussion is the space-time manifold. The 
fibers are said to project down to the base manifold. A principal fiber bundle is a fiber bundle in 
which the structure group G acts on the total space E in such a way that each fiber is mapped onto itself 
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and the action of an individual fiber looks like the action of the structure group on itself by 
lefttranslation. In particular, the fiber F is diffeomorphic to the structure group G. The gauge principle 
shows how electromagnetism can be introduced into quantum mechanics. 
 
In his 1929 paper Weyl also includes an expression for the curvature Ω of the connection A, namely, 
Cartan’s second structural equation, which in modern differential geometry notation is Ω = dA + A ∧ A. It 
is the same form as the equation used by Yang and Mills, which in modern notation is Ω = dA + 1/2 [A,A].  
 
Since the transformations in (9) form an abelian group U(1), the space-time vector potential A 
commutes with itself. Thus in electromagnetism the curvature of the connection A is just 
 
(10) Ω = dA 
 
Differential Geometry 
 
Differential geometry—principally developed by Levi-Civita, Cartan, Poincaré, de Rham, Whitney, Hodge, 
Chern, Steenrod and Ehresmann—led to the development of fiber bundle theory, which is used in 
explaining the geometric content of Maxwell’s equations. It was later used to explain Yang-Mills theory 
and to develop string theory. 
 
In 1959 Aharonov and Bohm established the primacy of the vector potential by proposing an 
electron diffraction experiment to demonstrate a quantum mechanical effect: A long solenoid lies 
behind a wall with two slits and is positioned between the slits and parallel to them. An electron source 
in front of the wall emits electrons that follow two paths: one path through the upper slit and the 
other path through the lower slit. The first electron path flows above the solenoid, and the other path 
flows below it. The solenoid is small enough so that when no current flows through it, the solenoid 
does not interfere with the electrons’ flow. The two paths converge and form a diffraction pattern 
on a screen behind the solenoid. When the current is turned on, there is no magnetic or electric field 
outside the solenoid, so the electrons cannot be affected by these fields. However, there is a vector 
potential A , and it affects the interference pattern on the screen. 
 
Thus Einstein’s objection to Weyl’s 1918 paper can be understood as saying that there is no Aharonov-
Bohm effect for gravity. 
 
Wu and Yang analyzed the Aharonov Bohm prediction and commented that different phase shifts 
(q/ch)φ may describe the same interference pattern, whereas the phase factor e(iq/chφ provides a unique 
description as we now show. (h= Planck’s constant) 
 
Let’s see how by using the primacy of the four vector potential A, we can derive the homogeneous 
Maxwell’s equations from differential geometry simply by using the gauge transformation. Then we 
will get the nonhomogeneous Maxwell’s equations using the fact that our world is a four-dimensional 
(space-time) world. 
 
In electromagnetic theory, two fundamental principles are ∇·B = 0 (no magnetic monopoles) and for 
time-independent fields E = −∇A0 (the electromagnetic field is the gradient of the scalar potential), so 
consistency dictates that in the time-dependent case, we assign the two terms to B and E respectively: 
 
(11) B =∇×A and E = −∇A0 − ∂tA . 



 
The gradient, curl, and divergence are spatial operators—they involve the differentials dx, dy, and 
dz. The exterior derivative of a scalar is the gradient, the exterior derivative of a spatial 1-form is the 
curl, and the exterior derivative of a spatial twoform is the divergence. In the 1-form A, the -A0dt 
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spatial twoform 
is a spatial scalar and when the exterior derivative is applied gives rise to ∇A0. The remaining terms 
in A are the coefficients of dxi constituting a spatial 1-form and thus produce ∇×A. We define the field 
strength F as F = dA, and from equation (10) we see that the field strength is the curvature of the 
connection A. 
 
Feynman Diagrams 
 

 
 
Feynman introduced schematic diagrams, today called Feynman diagrams, to facilitate calculations 
of particle interaction parameters. External particles, represented by lines (edges) connected 
to only one vertex are real, i.e., observable. They are said to be on the mass shell, meaning their 
four-momentum squared equals their actual mass, i.e., m2 = E2 − p2. Internal particles are represented 
by lines that connect vertices and are therefore intermediate states—that is why they are said to 
mediate the interaction. They are virtual and are considered to be off the mass shell. This means their 
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four-momentum squared differs from the value of their actual mass. 
 
(Figure 1) is a vertex diagram and as such represents a component of a Feynman diagram. It illustrates 
the creation of an electron-positron pair from a photon, γ; it is called pair production. The γ is 
represented by a wavy line. The Feynman-Stuckelberg interpretation of negative-energy solutions 
indicates that here the positron, the electron’s antiparticle, which is propagating forward in time, is in all 
ways equivalent to an electron going backwards in time. 
 
If all the particles here were external, the process would not conserve energy and momentum. To 
see this you must first remember that since the photon has zero mass due to the gauge invariance of 
electromagnetic theory, its energy and momentum are equal. Thus β, which equals p/E 
(momentum/energy) , has the value 1; but β = vc, so that the photon’s velocity is always 
c, the speed of light.  
 
In the diagram, the electron and positron momenta are equal and are in opposite directions. The photon 
travels at the speed of light, and therefore its momentum cannot be zero; but there is no particle to 
cancel its momentum, so the interaction cannot occur. (For it to occur requires a Coloumb field from a 
nearby nucleus to provide a virtual photon that transfers momentum, producing a nuclear recoil.) 
Therefore the γ in the diagram is internal. Its mass is off the mass shell and cannot equal its normal 
value, i.e., zero. 
 
 
(Figure 2) is also a vertex diagram and represents an electron-positron pair annihilation producing a γ. 
Again, if all the particles are external, conservation of energy and momentum prohibit the reaction from 
occurring; therefore the γ must be virtual. 
 

 
 


