Linear Systems Theory

* Introduction — Receptive fields and
mechanisms

» Fourier Analysis — Signals as sums of sine
waves

* Linear, shift-invariant systems
— Definition
— Applied to impulses, sums of impulses
— Applied to sine waves, sums of sine waves

» Applications

Linear Systems Analysis

Systems with signals as input and output

* 1-d: low- and high-pass filters in electronic
equipment, fMRI data analysis, or in sound
production (articulators) or audition (the
ear as a filter)

 2-d: optical blur, spatial receptive field

+ 3-d: spatio-temporal receptive field

Fourier Analysis

Signals as sums of sine waves

* 1-d: time series
— fMRI signal from a voxel or ROI
— mean firing rate of a neuron over time
— auditory stimuli
 2-d: static visual image, neural image
+ 3-d: visual motion analysis
* 4-d: raw fMRI data

Receptive Field

* In any modality: that region of the sensory
apparatus that, when stimulated, can
directly affect the firing rate of a given
neuron

» Spatial vision: spatial receptive field can
be mapped in visual space or on the retina

* Examples: ' |

LGN VA1

Spatial Vision

* Image representation or coding

— At each stage, what information is kept and
what is lost?

* Image analysis
* Nonlinear: pattern recognition

Receptive Field
A spatial receptive field is an image
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with its own Fourier transform.




Neural Image

A spatial receptive field may also be treated as a linear
system, by assuming a dense collection of neurons with the
same receptive field translated to different locations in the
visual field:
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Frequency Response

This scaling of contrast by a linear receptive field in the
neural image is a function of spatial frequency determined
by the shape of the receptive field.

Contrast Gain

Spatial Frequency

Neural Image of a Sine Wave

For a linear, shift-invariant system such as a linear model of
a receptive field, an input sine wave results in an identical
output sine wave, except for a possible lateral shift and
scaling of contrast.
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Orientation Tuning

If a receptive field is not circularly symmetric, the scaling of
contrast is also a function of orientation (for a given spatial
frequency) determined by the shape of the receptive field.

Contrast Gain

Orientation

Frequency Response

This scaling of contrast by a linear receptive field in the
neural image is a function of spatial frequency determined
by the shape of the receptive field.

Contrast Gain

Spatial Frequency

Application Preview: SF Adaptation
(Blakemore & Campbell, 1969)
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Application Preview: SF Adaptation
(Blakemore & Campbell, 1969)

[6~"~&~%*P fits all the pooled data.
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Auditory example: Pure tones

Increased —
pressure T

Amplitude

Air pressure

pressure Time

Decreased [—
pressure

One cycle

Pure tones can be described by 3 numbers:

Frequency = rate of air pressure modulation (related to pitch)
Amplitude = sound pressure level (related to loudness)
Phase = sin vs. cosine vs. another horizontal shift

Summary: Linear Systems Theory

+ Signals can be represented as sums of sine waves

+ Linear, shift-invariant systems operate “independently”
on each sine wave, and merely scale and shift them.

» A simplified model of neurons in the visual system, the
linear receptive field, results in a neural image that is
linear and shift-invariant.

» Psychophysical models of the visual system might be
built of such mechanisms.

« It is therefore important to understand visual stimuli in
terms of their spatial frequency content.

* The same tools can be applied to other modalities (e.g.,
audition) and other signals (EEG, MRI, MEG, etc.).

Fourier components of a square wave

(a)

(b)

(e)

Frequency and amplitude

weak 100 Hz strong 100 Hz weak 1000 Hz strong 1000 Hz
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Sound pressure level

Fourier components of a square wave
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Fourier Synthesis — Building Stimuli from Sine Waves

Fourier spectrum representation of sound
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Fundamental frequency and harmonics
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Flute (open pipe) harmonics

Flute pictured as cylinder, length L
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Flute (open pipe) harmonics

Other notes (shorten the pipe)

FFT Algorithm

e Computes DFT of finite length input.
e Efficient for inputs of length N = m".
e Produces 2 outputs, each of size/length equal

to that of the input: real part (cosine coeffs),
imaginary part (sine coeffs).

Lots of Fourier Transforms

name time domain freq domain

Fourier transform  continuous, infinite  continuous, infinite

Fourier series continuous, periodic discrete, infinite
DTFT discrete, infinite continuous, periodic
DFS discrete, periodic discrete, periodic
DFT discrete, finite discrete, finite

Discrete Fourier Transform (DFT)

Analysis:
N-1 )
3 zn] e Ir/NEn 0 <K< N -1
X[k] = n=0
0 otherwise
Synthesis:
N-1 )
LS X[K]ed@r/NEn 0 <n< N -1
z[n] = k=0
0 otherwise

xz[n]: discrete, finite

X[K]: discrete, finite

Complex numbers and complex exponentials

7a +/bi: ﬁ’“’,ﬁwﬂsimﬁ] where | [orj]= J-1

real imaginary amplitude phase . .
part part imaginary

where:
a=Acos¢ b= Asing @
/'
A=+a?+b? o= tan’1(b /a) real
Why bother?

(A16f¢1 )(A2ei¢2 ) _ A1A2e'("’1+'¢<)

amplitudes phases
multiply add

Discrete Fourier Transform

X[k]=Y x[n]e” M7 o<k <N-1

= > x[n](cos((2x / N)kn)+ isin((2x /| N)kn))

3>
I}
o

k is frequency in cycles/image (or cycles/signal) and is computed

effectively only for frequencies zero (DC), 1, 2, ..., N/2. The

vector you get back from MATLAB (fft or fft2, inverses are ifft and

ifft2), however, continues redundantly (for real signals, that is):
0,1, ..., N/2-1, N/2=0, N/2-1, ..., 1.




DFT of a Cosinusoid

DFT of a Sine Wave

2nkn 2nwkn

2rkn + Asingsin

N

Acos( —¢):Acos¢cos

The Fourier coefficient for this frequency
of k cycles/signal is:
a+ bi =(Acos¢)+ (Asing)i

In other words, the amplitude is A and the phase

is @.

DFT of Impulse Signals and Constant Signals

2mkx
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Similarity Theorem
If f(x) <> F(w)
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Discrete Fourier Transform Matrix

Analysis:  X[k] = Y, X[n] exp(-j2rkn/N)
n

For real valued inputs:

XdK =2 Mn] cos(..) X[kl =D, -xn] sin(...
n n

Xk cosines (x[n])

Xo[]

Rows of P called projection functions: ;] PP

Properties of the DFT

Discrete Fourier Transform Matrix

Synthesis:  x[n] = Y, X[K] exp(j2rkn/N)
k

-

sines

—

) XdK]

\cosines

XS]

@

1
Cols of B called basis functions. B = PT, ~B BT= |

Time/Space Reversal

If z[n] & X[k],
then z[—n] = z[N — n] & X*[k]
where * means complex conjugate.

Analysis egn:
N-1 )
X[k = Z 2[n] e~ /N)kn

n=0

Change of variables (m =N —n, n=N —m):
N-1 m=1
Z z[N —n] e—i@r/N)kn  — Z z[m)] eI(2m/NYkm —j2mk
n=0 m=N
N-1

Z z [7",] e;(ZW/N)km

m=0

For real z[m],

N-1
Z 2[m] @ NEm — X2 (k]

m=0

Circular shift
f, 90 deg shift

If x[n] <P X[k], then:
2f, 180 deg shift

x[(n-m)n] € exp(-j2Tkm/N) X[k]

i.e., only phase (hot magnitude) is affected
= \/\/\/
NAI‘ N A T Y Y I A
N-§_101234 6 -5-4-3-2-1012 3425

Even/Odd-Symmetric Signals

Even signal: z[-n] = z[n] v\/\/\/
QOdd signal: z[-n] = —z([n] W

Any signal can be decomposed:
z[n] = we[n] + zo[n]
where z¢ is even,
we[n] = 3(zln] + z[-n])
and z, is odd,

zTo[n] = %(z[n] —z[-n])




DFT of Even/Odd Signals

DFT of even signal is real:
zeln] = S(eln] + ze[—n])
Xelk] = 3(Xelk] + XZ[k])
= Re{Xc[k]}
i.e.,all cosine terms

DFT of odd signal is imaginary:

wo[n] = 3(zo[n] — zo[—n])
Xolk] = 3(Xo[k] — X5IKD)
= JIm{Xo[k]}

i.e., all sine terms

Parseval's Theorem

N-1 1 N=1
Y lelnl? = X X[k
n=0 k=0

Derivation for real z[n]:

X[k] = Pan] %PTP —1

=

y =L 1
¥ 2 XWIE = SXTRIXE]
k=0 °

Il

Il

;;(Pz[n])T(P:::[n])

Il

%(ZT [n]P"Paln])
#7[n] (LPTP) oln)

T Inlaln]

[}

Intuition: P is orthogonal (orthonormal when multiply by
1/N) like a rotation matrix. Length is preserved under rota-
tion.

Symmetry Properties
For real z[n]:
1. Re{X][k]} is even.
2. Im{X[k]} is odd.
3. || X[k]|| is even.
4. Phase of X[k] is odd.
To generate a signal or image from a transform:

Adopt the symmetry constraints and inverse trans-
form = real signal.

Other Properties of the Fourier Transform

Linearity f+g«<F+G

. . dcos2rwx . dsin2rwx
Derivative — Y - —2nmsin 2nwX, fm = 27w cOS 27w X

Hence: dr © —i2noF
dx

_IF

Integral _[fdx “ 5
W

“Orthonormal” DFT

Analysis:

=z

—1
XK = - gfn] e=d(2n/Nkn
N =0

n

Synthesis:

1 Nil j(2n /N
z[n] = —— X[k] ed 2 'N)kn
VN i

In matrix notation:

X[k] = Pz[n]

z[n] = BXIk]
where
PTP =1
B = pPT

DTFT and DFS




Discrete-Time Fourier Transform (DTFT)

Analysis:

X(w) = i z[n] e 99

n=-—oo
Synthesis:
1 (7 3
z[n] = _/ X (w) ™ dw
27 J—7
z[n]: discrete, infinite, not necessarily periodic

X (w): continuous, periodic (with period 2)

DFT versus DTFT

DFT is equally spaced samples of DTFT.

DTFT for z[n] of finite length, i.e., zero outside [0, N — 1]:

oo N-1
X(w) = Z z[n] e 7" = Z z[n] e
n=—cc n=0
DFT:
N-1
X[k] = Z 2[n] 9T/
n=0

Same for w = (2r/N)k, that is, for N equally spaced freqgs
between w =0 and w = 27.

X (w) is Periodic

X(w+2r) = Z z[n] g~ (wt2mn
= Z z[n] g Jwng=i2mn
= > z[n] e Iwn
= X(w)

where:
e~72™ = cos(27wn) + j sin(2mn)
= 140

DFS versus DFT
X[k] & #[n] are periodic extensions of X[k] & z[n], e.g.,
#[n] = z[(nmod N)]

ey { 3] 0<n<N-1
#IMI=1 0  otherwise

The fact that z[r] and X[k] are zero outside [0,N — 1] is
implied but not always stated.

Evaluating the analysis/synthesis equation outside [0, N —1]
does not give 0, but rather gives the periodic extension.

Edge effects: /\/ vs. /\ﬂ/\ﬂ/\/

Discrete Fourier Series (DFS)

Analysis:
N-1 . .
X[k = Z F[n] e—](27r/]\/)kn
n=0
Synthesis:
1 N=1 )
Fn] = = Z Rk 6](2‘"/N)kn
N k=0

#[n]: discrete, periodic (period N)

X[K]: discrete, periodic (period N)

Two-dimensional Fourier transform

Space domain Frequency domain
myT
6 —0———0—(;
X
y L
X

y




Linear, Shift-Invariant Systems

* Linearity: scalar rule and additivity
» Applied to impulse, sums of impulses
» Applied to sine waves, sums of sine waves

Additivity

Input 1 Output 1

A
time v time

Input 2 O‘Rl 2
time V time

Sum of Inputs Sum of Outputs

time

Homogeneity (scalar rule)

Neural activity fMRI response
Original input Output
time time
Original input ~ x 2 Output x 2
time time

Linear systems

A system (or transform) converts (or maps) an input signal into an
output signal:
y(t) = T[x(0)]

Alinear system satisfies the following properties:

1) Homogeneity (scalar rule):
T(a x(t)] = a y(t)
2) Additivity:
Tx, () + x,(0)] = y, (1) + y,(t)

Often, these two properties are written together and called
superposition:
T(a x,() + b x,(t)] =ay,() + b y,(t)

Shift invariance

Original input Output
time ; ; time
Original input, later in time Output, later in time

time S 7 time

Shift invariance

For a system to be shift-invariant (or time-invariant) means that a
time-shifted version of the input yields a time-shifted version of the
output:

y(t) = T[x(0)]

y(t-8)=Tix(t-s)]

The response y(t - s) is identical to the response y(t), except that it
is shifted in time.




Neural Image - Reprise

A spatial receptive field may also be treated as a linear
system, by assuming a dense collection of neurons with the
same receptive field translated to different locations in the
visual field. In this view, it is a linear, shift-invariant system.
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Linear, Shift-Invariant Systems

* Linearity: Scalar rule and additivity
» Applied to impulse, sums of impulses
» Applied to sine waves, sums of sine waves

Convolution as sum of impulse responses

Input: ‘

Impulse response:

Output:

s

Convolution as sum of impulse responses

Input S(1): —

Impulse response /(1)

A=ty

Aol(t—ty):

Agl(t—t3)

Agl(t—tg):

Agl(t—to):

Apal(t=112):

1
SALG-1):
=

Convolution

Discrete-time signal: x[n] = [x1, X2, X3, ...]

A system or transform maps an input signal into an output signal:

yin] = T{x{nl}

A shift-invariant, linear system can always be expressed as a
convolution:

yin] =Y. xim] hin-m]

where h[n] is the impulse response.

Convolution derivation
Homogeneity:
T{a xn]} = a T{x{n]}

Additivity:
T{x,[n] + x,[nl} = Tox, [n)} + T{c ]}

Superposition:
T{a x,[n] + b x,[n]} = a T{x,[n]} + b T{x,[n]}

Shift-invariance:
yin] = T{xnl} => yln-m] = T{x[n-m]}




Convolution derivation (contd.)

Impulse sequence:
d[n] =1 for n =0, d[n] = 0 otherwise

Any sequence can be expressed as a sum of impulses:

x[n] = Y xm] d[n-m]

where
d[n-m] is impulse shifted to sample m
x[m] is the height of that impulse

Example:

|, - ‘

Convolution derivation (cont)

x[n]: input
y[n] = T{x[n]}: output
h[n] = T{d[n]}: impulse response

1) Represent input as sum of impulses:
y[n] = T{x[n]}

yin] = T{ 3 x(m] din-m] }

2) Use superposition:

yIn] =)_x[m] T{d[n-m]}

3) Use shift-invariance:

yIn] = x[m] h[n-m]

Convolution as sum of impulse responses

Input S(: EENNOREESAUEATNEEE

Impulse response /(1)

A=ty

Aol(t—ty):

Agl(t—t3)

Agl(t—tg):

Agl(t—to):

Aral=110):

n
SALG-1):
S

Convolution as correlation with the
“receptive field” (time-reversed impulse
response):

RE (0

RF\(1)S(0):

RF():

REA(0S(0):

REy():

RES(0S():

Convolution as matrix multiplication

Linear system <=> matrix multiplication
Shift-invariant linear system <=> Toeplitz matrix

: : 1

. 2
5 123000 0
2 (o 012300 0
-3 ©e00 01230 seefl g
4 000123 2

Columns contain shifted copies of the impulse reésponse.
Rows contain time-reversed copies of impulse response.

Convolution as sequence of weighted sums

past present future
0 ? 0O 1 0 0 0 0 O input (impulse)

J

/8 1/4 1/2 — weights

R

0O 0 0 121418 0 0 O output (impulse response)

-

0 0 O I I I 1 1 1 input (step)
/8 1/4 1(2 —_— weights

N

0O O O 1/23/47/8 7/8 7/8 7/8 output (step response)

1




Continuous-time derivation of convolution

Pulses and impulses

0 otherwise

5(t):{ o if t=0

L if o<t<A

- { §

0 otherwise

o(t) = EE%OA(t)

Staircase approximation to continuous-
time signal

B(t) = S 2(kA)oa(t — kA) AL

k=—o0

00

z(t) = glg}) S m(kA)a(t — kA) A
k=—o00

z(t) = /ii x(s)6(t — s) ds.

Convolution

Representing the input signal as a sum of pulses:
y()=T(@®)] = T U:.r(s)o'(r —9) ds}

= T |lim Y x(kA)da(t— kA)A} .

k=—00
Using additivity,
y(t) = Eulo i Tz(kA) oa(t — EA) A
k="

Taking the limit,
y(t) = f Tla(s) 6(t — ) ds].

Using homogeneity (scalar rule),
y(t) = /f‘ Tlx(s)6(t — s) ds)].
Defining h(t) as the impulse response,

vy = [ ’; (s) h(t — 5) ds.

Linear, Shift-Invariant Systems

* Linearity: Scalar rule and additivity
» Applied to impulse, sums of impulses
* Applied to sine waves, sums of sine waves

Shift-invariant linear

d N I Impulse Impulse Responsa
systems and impulses | 8
HO

Each Impulse Creates a

Scaled and Shifted Impulse Response

The sum of all the impulse responsas
is the final system response




Shift-Invariant Linear Systems and Sinusoids

We measure the scaling and
shifting for each sinusoid

Scaled and Shifted
Sinusoidal Inputs sinusoidal outputs

Qv—'
A = SN
WA = Faaas,

Example — Bass/Treble filters

Signal Frequency content

Miles Davis
“Half Nelson”

@ Filter
Bass only:

Low-pass or

@ Bass Filter
Treble only:

High-pass or

@ ) Treble Filter

—_—
Time

I;o;ev
Next

Shift-Invariant Linear Systems and Sinusoids

Frequency Description
of the system

Sinusoidal nd Shifted
Inputs sinusoldal autputs X
o] ™
NS E S
\/ = X
% ~
S
N\
\ - frequency
s A AR 20
NANA A A DA =
Ry AT AT S &
TRTATAY VY £l -2
ERE

frequency

The Big Payoff

The signal: f & F
The system T has impulse response j < /
The system's response is T(f)=i*f < IF

In other words, the Fourier transform of the impulse
response is the modulation transfer function (MTF).

The corresponding receptive field is the time- or
space-reversed impulse response.

Convolution and multiplication

im mpl .
time sample Fourier transform

Convolution: / / frequency sample
/

xi[n] - x2[n] <P Xi1[K] Xz[k]

Multiplication: convolution

x1[n] x2[n] <€ (1/N) X1[>]t Xo[K]

The Big Payoff

input signal input transform
cross-correlated with convolved with X multiplied by

* ® F

impulse response filter MTF

& L

output signal output transform

receptive field




1-D Example: Gaussian Blur

input signal

impulse response J\ é

output signal

1-D Example: Bandpass (DOG) Filter

input signal

-

E -
-
-—%

impulse response

output signal

-

Multiplication and Convolution

WAWAUAE“ :
A .

}

N

V

Gabor function

1-D Example: Bandpass (Gabor) Filter

input signal

-

=
-
==£

impulse response

output signal

-

1-d Example: fMRI Block alternation with
noise & drift
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Bandpass o
filtering g os

20
to remove s

: s
nOIse and A 12 24 36 48 60 72 84 96
drift Time (sec)
z@% 0

*How do you make a ER
low-pass filter? %G 0G5 G Gis oz 02 03 0% 04 045 05

Fr H:
* How do you make a requency (Hz)

high-pass filter?
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fMRI response
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2-D Example Gaussian Blur

input signal

impulse response

output signal

2-D Example Bandpass (DOG) Filter

input signal

impulse response ( > n
" -
output signal ‘ '.. ] < >
t
y

2-D Example: Bandpass (DOG) Filter
__ }

input signal
impulse response

output signal

2-D Example Gabor Filter

input signal

impulse response

output signal

Applications: Line Spread Function
(Campbell & Gubisch, 1966)




Applications: Line Spread Function
(Campbell & Gubisch, 1966)

Applications: Multiple Mechanisms
(Campbell & Robson, 1968)
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Point-Spread Function

Applications: Multiple Mechanisms
(Campbell & Robson, 1968)
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Applications: Multiple Mechanisms
(Campbell & Robson, 1968)
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Applications: Summation Within and Between
Channels (Graham & Nachmias, 1971)
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Applications: Summation Within and Between
Channels (Graham & Nachmias, 1971)

Applications: SF Adaptation (Blakemore &
Campbell, 1969)
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Applications: Summation Within and Between
Channels (Graham & Nachmias, 1971)
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Applications: SF Adaptation (Blakemore &

Sutton, 1969)

Applications: SF Adaptation (Blakemore &
Campbell, 1969)

[e~"" —&~] fita all the pooled data.
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Applications: SF Adaptation (Blakemore &
Sutton, 1969)




Applications: Pattern Masking
(Wilson et al., 1983)

Mask one pattern (Gabor, D6, ...) by another (e.g., a
sine wave grating, tilted obliquely)

Threshold is raised by the masker if channel being
used is sensitive to both

Many possible explanations of the rise in threshold
with masker contrast:

- Weber’s Law, possibly as a result of multiplicative
noise (noise whose SD is proportional to mean
response): Al _

/

- Nonlinearity followed by additive noise

Applications: Pattern Masking
(Wilson et al., 1983)

i ce : LE
Lo uE ¥ a . By 2. -
- : 2oL .
5 0= ® 3 s 2 20- o -
P . @ |
w M R e e SE— |
R ity s F 3
% o i [LEM. ] v OxM.
= a0k ] - LTS .« 3
= E = * & ]
] H * o
a g w9 w
20~ - - 2.0 S
[
:IU L 1 L | — |J: 1 1 L L L
25 8% W a0 40 05 L0 20 40 A0
Spatial Fregmancy (D1 Spatial Freguency 101

Applications: Pattern Masking
(Wilson et al., 1983)
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Applications: Pattern Masking
(Wilson et al., 1983)
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Applications: Pattern Masking
(Wilson et al., 1983)
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Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)
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Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)
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Applications:Detection vs. Identification,
Most Discriminating Mechanism
(Regan & Beverley, 1985)

Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)
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Applications:Sampling and Reconstruction
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Applications:Detection vs. Identification,
Most Discriminating Mechanism
(Regan & Beverley, 1985)
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction

Applications:Sampling and Reconstruction

sinc(x) = sin(x)/x Box Filter
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Applications:Sampling and Reconstruction




Applications:Sampling and Reconstruction

Applications:Sampling and Reconstruction

Applications:Sampling and Reconstruction
(Yellott, 1983)

Fovea

Applications:Sampling and Reconstruction
(Yellott, 1983)

Periphery (approx. 35 deg ecc.)

Applications:Sampling and Reconstruction
(Yellott, 1983)

Parafovea (approx. 6 deg ecc.)




