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Lattice Vibrations – Phonons in Solid State 
Alex Mathew, University of Rochester 

  
Abstract—Phonons are quanta of lattice vibrations. They play 

an important role in various phenomena seen in solid state. The 
physics of phonons and phenomena associated with them are 
explored.  
 

Index Terms—Phonons, Lattice Vibration, Solid State, 
Dispersion Relation 

I. INTRODUCTION 
HE term phonon is used to draw an analogy between 
photon representing a quantum of electromagnetic radiation 

and quanta of lattice vibration.  Theory of phonons explains 
most solid state phenomena which cannot be explained with 
static lattice theory [1]. 
 

II. MECHANICS OF PHONONS 
The energy of a phonon can be derived by considering the 

lattice as a collection of oscillators. There can be many kinds of 
interaction between atoms. The potential energy of an atom can 
be expressed as  
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where U0 is the potential energy in equilibrium, α and β can 

be x, y or z. u represents the interaction between atoms, x is the 
position and m and n are labels of atoms in mth and nth position. 
The total kinetic energy of the crystal can be written as the sum 
of kinetic energies of the constituent unit cells.  
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The Hamiltonian for this model can be written as 
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A solution to the equation representing harmonic potential 

maybe written as U = Aei(kna-ωt)

 
 

 

 This yields the relationship between ω and k. 
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where K is the second derivative of the interaction energy u 

and a the separation between the ions. 
 
This relationship is called the dispersion relation [2]. 
Proceeding in a similar way, the dispersion relation for a 

solid consisting of unit cells with two ions can be derived. The 
relation between ω and k in this case is 
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where K and G are quantities analogous to spring constant 
representing interaction between the atoms in a unit cell and 
that between unit cells. 

 
The two solutions are shown in Figure 1.  
 

 
 

Fig. 1. Dispersion curves [1]. 
 
The lower branch is called acoustic branch because the 

dispersion curve when k is small is of the form ω =vk, which is 
the frequency-k relationship of sound waves. The upper branch 
is called optical branch. This branch is responsible for most 
optical behavior of solids.   Most ionic crystals are easily 
excited by radiation leading to a vibrational state in which 
negative and positive ions oscillate out of phase with each 
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other.  
 

III. PHONON STATISTICS 
When a solid absorbs energy, the number of phonons 

changes. Macroscopic properties like thermal energy can be 
described by suitable statistical models. If a solid is viewed as a 
collection of distinguishable oscillating atoms, they would obey 
Maxwell-Boltzmann distribution [3]. Since phonons are 
indistinguishable particles like photons, they follow Bose-
Einstein distribution. There is no limit on the number of 
particles a boson state can occupy. The mean occupation 
number of phonons at a temperature T is 
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This equation gives the number of phonons occupying an 

energy state with frequency ω(kj).  The total vibrational energy 
is  
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IV. PHONONS AND SOLID STATE PROPERTIES 
The theory of phonons is required to explain many solid state 
properties, some of which are listed below. 
 

A. Specific Heat 
Static model of lattice fails to give a mathematical 

description of the temperature dependence of specific heat of 
solids. It assumes that all contributions to specific heat come 
from electronic degrees of freedom.  At low temperatures 
specific heat varies as T3. The additional contribution to 
specific heat comes from phonons. T3 dependence of specific 
heat at low temperatures can be explained by looking at 
phonons from a quantum mechanical point of view. Debye 
specific heat gives a reasonably good formula for specific heat 
over the full range of temperatures [4]. Figure 1 shows the 
agreement of specific heat as obtained from the formula and 
experimental values for silver (Debye temperature, TD = 215K) 
[5].Debye specific heat is derived by linking specific heat to 
total vibrational energy.  

 
 

 
Fig .2. Low Temperatures Specific Heat of Silver [5]. 

 
 

B. Melting 
Phonon amplitude increases with increasing temperature.  

Hence there is a strong dependence of melting on phonon 
amplitude.  

 

C. Thermal and Electrical Conductivity 
   In a perfect periodic potential, electrons experience no 
collision. This would lead to infinite thermal and electrical 
conductivity. A major source of scattering is lattice vibration.  
Phonon theory explains the deviation of thermal conductivity 
from electrical conductivity in non-metals. In most metals, 
thermal conductivity characteristics and electrical conductivity 
characteristics are correlated. However, phonons as heat 
carriers are relatively more important in non-metals. In pure 
crystalline structures, thermal conductivities are different along 
different axis due to differences in phonon coupling. Electron-
phonon plays an important role in electrical conductivity of 
certain materials [6].  
 

D. Superconductivity 
   BCS theory of superconductivity models Type I 
semiconductors. A key element in this theory is the pairing of 
electrons into Cooper pair. This pairing is a result of coupling 
with phonons. 
 

E. Transmission of Sound 
   If there are no phonons, all materials would be acoustic 
insulators.  
 

F. Reflectivity of Ionic Crystals 
   In ionic crystals reflectivity maximum occurs at frequencies 
below their energy gap. This can be explained by the generation 
of optical phonons, when radiation forces out-of-phase 
vibration of ions in a unit cell.  
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G. Interaction of Phonons with other particles 
   Typical phonon energies are comparable with infrared 
radiation. This makes this region of electromagnetic spectrum 
particularly important in the context of phonons. In all 
interactions momentum is conserved.  The coupling between 
lattice vibration and photons involves two phonons in crystals 
such as germanium and silicon. Lax and Burstein have 
proposed two mechanisms for this coupling. [7] 
Mechanism 1 – A transverse optical phonon created by the 
photon decays into two phonons.   
Mechanism 2 – Direct coupling between photon and phonon. A 
dipole moment results when an atom displaced by a phonon 
distorts the charge distribution of neighboring atoms. 
Figure 3 shows phonon generation in Silicon [8]. 
 

 
                 Fig. 3.  Lattice Absorption in Silicon [8]. 
 
Scattering mechanism with higher energies, 1eV to 10 eV also 
provides information on phonon spectra. Brillouin and Raman 
scattering are two important spectroscopic tools. They involve 
inelastic scattering of photons by a solid. The resulting shifts in 
frequency can be explained by creation or annihilation of 
phonons. Raman scattering involves optical phonon whereas 
Brillouin scattering involves acoustic phonons.  
   X-rays can be scattered by phonons [9]. This effect must be 
taken into account when calculating peak intensities. Bragg 
peaks predicted by static lattice model is incorrect. Neutron 
scattering is a powerful tool in analyzing crystals. Scattered 
electrons lose energy in discrete amounts. This phenomenon 
can easily be explained by quantum theory of phonons. 
 

V. CONCLUSION 
  The concept of phonons is a key element in solid state physics. 
Phonon theory gives a satisfactory explanation of most solid 
state phenomenon. 
  

REFERENCES 
[1] N. W. Ashcroft, D. Mermin, Solid State Physics, Holt, Rinehart and 

Winston, 1976 

[2] J. A. Riessland, The Physics of Phonons, Wiley-Interscience Publication, 
1973 

[3]  Wannier, G. H., Statistical Physics, Wiley, New York, 1966 
[4] P. Debye, Ann. Physik 22, 186 (1907) 
[5] http://hyperphysics.phy-astr.gsu.edu/hbase/solids/phonon.html#c2 
[6] R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus, “Electron-phonon 

coupling and the electrical conductivity of fullerene nanotubules”, Phys. 
Rev. B 48, 11385 - 11389 (1993)  

[7] Lax, M., and Burstein, E., Phys. Rev., 97, 39-52(1955) 
[8] Johnson, F. A., Progress in Semiconductors, 9, 181-235 (1965) 
[9] J. Laval, “X-Ray scattering by thermal agitation  of atoms in a crystal”. 

Reviews of Modern Physics, vol. 30, January 1958 
 
 
 
 


	INTRODUCTION
	Mechanics of phonons
	Phonon Statistics
	Phonons and solid state properties
	Specific Heat
	Melting
	Thermal and Electrical Conductivity
	Superconductivity
	Transmission of Sound
	Reflectivity of Ionic Crystals
	Interaction of Phonons with other particles

	CONCLUSION
	References

