
Holography Without Photography

Thad G. Walker

Department of Physics, University of Wisconsin-Madison,

Madison, Wisconsin 53706

September 21, 1998

Abstract

I detail a method for producing high quality Fourier transform holograms using a

computer, laser printer, and overhead transparency film. The method should be useful

for lecture demonstration and holography laboratories.

Given an arbitrary holographic phase/amplitude plate, computer-generated holography

attempts to find a suitable binary encoding of the (complex) transmission function of the

hologram. Several solutions to this problem have been described in this journal with appli-

cations to physics laboratories[1, 2, 3, 4, 5, 6]. The instructional use of computer generated

holograms has the potential to enhance students’ understanding of the holographic recon-

struction process. In previous work, poor resolution of available computer output devices

required the holograms to be photographically reduced for use in a laboratory optical sys-

tem. Photographic processing limits the rate at which holograms can be produced to a few

1

per hour at best, and can be unreliable in the hands of a novice, often limiting the learning

experience for students attempting holography.

With the advent of low-cost, high resolution (> 300 dpi) laser printers, 75× 75 element

holograms can be produced directly on a 1′′ × 1′′ area of overhead transparency film. The

entire process, which includes graphical description of an object, calculation of the hologram,

and output to the printer, takes less than 5 minutes. The images reconstructed with a very

simple optical rail are of quite high quality. With rapid cycle time and excellent results,

such computer generated holograms should complement all-optical techniques for teaching

students about holography. The procedure is conceptually very similar to that recently

used in the demonstration of atom holography[7]. A related, though more complex, method

using xerographic reduction at lower resolving power was described some time ago in the

engineering literature[8].

Although many different types of holograms could be produced by variations on the

method described here, Fourier transform holography is particularly simple to demonstrate.

As its name implies, a Fourier transform hologram is the Fourier transform (with both phase

and amplitude information) of the object to be reconstructed. When the hologram is placed

in front of a lens and illuminated by a plane wave of light, the Fraunhofer diffraction pat-

tern that appears in the focal plane of the lens is the Fourier transform of the hologram’s

transmission function[9], and therefore reconstructs the object. Since the Fourier transform

of the object is in general complex, a Fourier transform hologram needs to modify both

the amplitude and the phase of the transmitted light. Using lithographic and/or photo-

graphic techniques, for example, one can generate an arbitrary phase/amplitude hologram

and therefore reconstruct an artificially produced object.

2

The central problem of computer-generated holography [10] is to simulate the Fourier

transform hologram via a binary representation, in this case using only dark or transparent

pixels output by a laser printer. The binary representation would work best if the hologram

were real, positive, and had uniform modulation depth. Describing the image to be produced

in terms of pixels at positions rj with real amplitudes a(rj) and phases φj, the ideal hologram

would have the complex transmission function

A(r′) =
∑
j

a(rj)e
2πir′·rj/fλ+iφj (1)

This clearly cannot be well-represented by a binary function. The simplest way to change this

into a real, positive function, is to take the real part of Eq. 1 and add a constant. Since the

Fourier transform of a real even function is symmetric, this is equivalent to symmetrizing the

object. Adding a constant to the transform adds a central bright spot to the reconstruction.

Thus a real-valued hologram can reconstruct the intensity pattern of an arbitrary object at

the price of adding a second, symmetric partner and a central bright spot.

The phases φj are arbitrary, since only the intensity and not the phase of the recon-

struction is observed. This arbitrariness plays an important role in determining the image

quality of the computer-generated hologram. Converting a positive, real hologram to binary

is most easily done by selecting a threshold t and making a dark pixel at r′ if A(r′) < t,

with a transparent pixel otherwise. Since the binary approximation to the hologram does

not distinguish values of A(r′) that are much greater than t from those that are only slightly

larger than t, it is important that the modulation depth of the hologram be as uniform as

possible, i.e. that the Fourier transform of the reconstruction be spread as evenly as possible

over many different pixels in the hologram. This is accomplished by choosing the phases φj

3

to be random, adding “white noise” to the reconstruction. The effect of the random phases

is illustrated for a 1-D transform in Fig. 1.

The apparatus, as implemented at the University of Wisconsin, is depicted in Fig. 2. It

consists of: 1) a computer with a graphics program and a C compiler; 2) a 600 dpi laser

printer; and 3) an optical rail system consisting of a 5 mW HeNe laser, a 20X microscope

objective, a 6′′ focal length lens, and a mount for holding 35 mm slides. The two lenses form

a telescope and focus the laser beam roughly 4 m from the hologram. With a mirror to

fold the image back close to the hologram, the long distance makes the reconstructed object

easily viewable by the student without further magnification.

Using the graphics program (Adobe Photoshop, GraphicConverter, and LView were all

used with success), the object is described as an R × R pixel array. The value of R is

the theoretical resolving power of the hologram, and is discussed below. To keep the C

program as simple as possible, it is essential to use a straightforward graphics format. The

“RAW” and “PGM” formats supported by most graphics programs are particularly nice,

consisting simply of a header followed by a sequence of 8-bit words in binary format, each

word describing a single pixel on the object. The C program, shown in Fig. 3, reads in the

graphics file and calculates the hologram as

A(r′) =
∑
j

aj cos(2πr′ · rj/fλ + φj) (2)

where rj is the position of the jth pixel on the object, r′ is the position on the hologram, f

is the focal length of the (compound) lens to be used for the reconstruction, λ is the laser

wavelength, and φi is a random phase. The binary representation of the hologram is made by

sampling A(r′) at 4R× 4R pixels on the hologram and finding the maximum and minimum

4

values of A. All points for which (A(r′) − Amin)/(Amax − Amin) > t are set to 1, all others

to 0. The value t = 0.6 used for the holograms displayed here was determined by trial and

error. Use of an FFT routine would considerably speed up the calculation of the hologram,

but as it stands the calculation takes only 30 sec on the 200 MHz computer. The C program

stores the binary representation to an output file which is printed by the graphics program to

the laser printer (examples tested include the HP LaserJet 4000, HP LaserJet5L, and Apple

LaserWriter Pro) onto overhead transparency film at 300 dpi resolution. The transparency

is trimmed to fit into the 35 mm slide holder. A hologram so generated is shown in Figure 4.

The reconstruction optics are particularly simple. The lenses for the telescope were

selected to make the laser beam roughly fill the hologram. A mirror 2m away reflects the light

back to a screen next to the hologram for easy viewing. A photograph of a reconstruction is

shown in Fig. 4. The two primary images are easily seen; much dimmer but also recognizable

are supplementary higher-order images due to sampling and the discrete Fourier transform.

A speckle pattern that arises from the relatively poor optical quality of the transparency

film is also observed.

The resolving power of the hologram can be understood with reference to Fig. 4. The

discrete Fourier transform repeats at intervals fλ/2d, where d is the pixel spacing on the

hologram (this is an example of Nyquists theorem: the maximum spatial frequency that can

be represented by samples a distance d apart is 1/2d). Using diffraction grating terminology,

the pixel spacing of d produces diffraction orders centered at integer multiples of fλ/2d.

Each diffraction order has an associated reconstructed image and its symmetric partner. In

order for the zeroth-order reconstruction to not overlap the first-order symmetric partner,

the image must be limited to lie between the optical axis and fλ/4d. The diffraction-limited

5

spot size is approximately fλ/D where D is the diameter of the hologram. Thus the resolving

power is R ≈ D/4d = 75 for a 1′′× 1′′ hologram at 300-dpi printer resolution. The observed

resolving power of about 60 is close to this limit, and is probably limited by aberrations in

the lens system.

Comparable results should be attainable using other computers, software packages, and

laser printers, though poor results were obtained when the printers were used at their ad-

vertised resolution. Thus, for 300 dpi resolution it is probably best to use a 600 dpi laser

printer.

The example given here is a simple Fourier transform hologram. Using the computer, it

is easy to make other types as well. As an example, one can add zone lenses to the hologram;

a simple way to do this is to make

A(r′) =
∑

i

cos(2π|r′ − ri|2/fλ + φi) (3)

This has the property that the two primary images and the laser spot image in different

planes; this adds background to the image, but allows the resolving power to be increased

to D/2d. Another interesting exercise is to form an intermediate image by adding two more

lenses to the setup; this allows spatial filtering of the hologram to remove the auxiliary

images and the laser spot. Other possibilities include simulating axicons (linear variation

of phase shift with radial position, as opposed to a lens which has a quadratic variation),

or 3-D holograms produced by allowing the zone plates for different object points to have

different focal lengths.

In summary, it is practical to generate holograms with readily available and inexpensive

computer equipment, avoiding photographic processing. The methods should be applicable

6

to lecture demonstration, as a supplement to all-optical holography laboratories, or as a

stand-alone holography experiment.

Support came from the NSF and the Packard Foundation. I thank J. Hanesworth for

help with the computer graphics.

References

[1] J. S. Marsh and R. C. Smith, “Computer holograms with a desk-top calculator”, Am.

J. Phys. 44, 774-777 (1976).

[2] C. W. Leming and O. P. Hastings III, “Computer-generated microwave holograms”,

Am. J. Phys. 48, 938-939 (1980).

[3] J. S. Marsh, “Optical scanner for the Apple computer”, Am. J. Phys. 53, 792 (1985).

[4] Xiangxi-Chen, J. Huang, and E. Loh, “Computer-assisted teaching of optics”, Am. J.

Phys. 55, 1129-1133 (1987).

[5] A. E. Macgregor, “Computer generated holograms from dot matrix and laser printers”,

Am. J. Phys. 60, 839-846 (1992).

[6] S. Trester, “Computer simulated holography and computer generated holograms”, Am.

J. Phys. 64, 472-476 (1996).

[7] M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, “Holographic manipulation of

a cold atomic beam”, Phys. Rev. Lett. 77, 802-805 (1996).

7

[8] R. A. Gonsalves and J. D. Prohaska, “Simple laboratory experiment on computer-

generated holograms”, Proc. SPIE 938, 472 (1988).

[9] E. Hecht, Optics, 2nd ed. (Reading, MA: Addison-Wesley Publishing Company, 1987),

Ch. 11.

[10] W. Lee, “Computer-generated holograms: techniques and applications”, Progress in

Optics 16, 119-232 (1978).

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes

in C, 2nd ed. (New York:Cambridge University Press, 1993).

8

Figure Captions

Figure 1: 1-D Fourier transform holograms with either random phases for the various object

points, or uniform phase. The random phase transform spreads the information about the

object over many pixels, while the uniform phase concentrates the object information onto

a few pixels. A binary representation of random phase hologram therefore gives a better

reconstructed image. Inset: 1-D object.

Figure 2: Schematic diagram for computer generated holography.

Figure 3: Computer program used to process the graphics files for the hologram. Memory

management routines are from Numerical Recipes (Ref.[11]).

Figure 4: Fourier transform hologram and its reconstruction.

9

-10

-5

0

5

T
ra

ns
m

itt
an

ce
 (

ar
bi

tr
ar

y
un

its
)

250200150100500
Hologram Pixel #

20

10

0

-10T
ra

ns
m

itt
an

ce
 (

ar
bi

tr
ar

y
un

its
)

Random Phases

Equal Phases

1.0

0.8

0.6

0.4

0.2

0.0

O
bj

ec
t I

nt
en

si
ty

 (
ar

b
un

its
)

6040200
Object Pixel #

10

LASER

Graphics:
Construct
Object

Calculate
Hologram

Graphics:
Represent
Hologram

Print Hologram
onto
Overhead
Transparency

Mirror Viewing
Screen

11

//holo.c--simple program for computer-generated holography
//Thad G. Walker University of Wisconsin-Madison
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "nrutil.h" //Numerical Recipes routines for memory allocation
#define twopi 6.283185307
#define R 75 //Resolving power of hologram
#define N 300 //hologram width in pixels
#define thres 0.6 //threshold for binary approximation

 void main(){
char pixel,obj;
int X,Y,row,col,junk;
float **pix,kdf=twopi/2.0,ranphi,max=0.0,min=0.0,res=R;
FILE *out,*in;
out=fopen("holo.pgm","w"); // output file, N X N size graphics file
in=fopen("uwphysics.pgm","r"); //input file, R X R size graphics file
fprintf(out,"P5 %d %d 255\n",N,N);//header
fscanf(in,"%1s %1s %d %d %d",&junk,&junk,&junk,&junk,&junk);//header
srand(17); //seed random number generator
pix=matrix(0,N-1,0,N-1); //allocate memory for graphical output
for(X=0;X<N;X++){for(Y=0;Y<N;Y++){pix[X][Y]=0.0;}} //initialization
//construct real hologram from input image
for(row=0;row<R;row++){for(col=0;col<R;col++){

fscanf(in,"%1c",&obj); //read 1 byte at a time
if(obj!=0){ //all non-zero bytes given same intensity

ranphi=((float) rand())/((float) RAND_MAX)*twopi; //select random phase
for(X=0;X<N;X++){for(Y=0;Y<N;Y++){

pix[X][Y]+=cos(kdf*(X*(1.-row/res)+Y*col/res)+ranphi);//add to hologram
}}

}
}}
//find max min
for(X=0;X<N;X++){for(Y=0;Y<N;Y++){

if(pix[X][Y]>max)max=pix[X][Y];
if(pix[X][Y]<min)min=pix[X][Y];

}}
//print output file
for(X=0;X<N;X++){for(Y=0;Y<N;Y++){

if((pix[X][Y]-min)/(max-min)>thres){pixel=255;
}else{pixel=0;}
fprintf(out,"%c",pixel);

}}
}

12

13

