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Geometric phases in quantummechanics play an extraordinary role
in broadening our understanding of fundamental significance of
geometry in nature. One of the best known examples is the Berry
phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which
naturally emerges in quantum adiabatic evolution. So far the
applicability and measurements of the Berry phase were mostly
limited to systems of weakly interacting quasi-particles, where in-
terference experiments are feasible. Herewe show howone can go
beyond this limitation and observe the Berry curvature, and hence
the Berry phase, in generic systems as a nonadiabatic response
of physical observables to the rate of change of an external para-
meter. These results can be interpreted as a dynamical quantum
Hall effect in a parameter space. The conventional quantum Hall
effect is a particular example of the general relation if one views
the electric field as a rate of change of the vector potential. We
illustrate our findings by analyzing the response of interacting spin
chains to a rotating magnetic field. We observe the quantization of
this response, which we term the rotational quantum Hall effect.

Berry curvature ∣ geometric tensor ∣ quantum dynamics ∣ quantum
geometry ∣ quantum Hall effect

In quantum mechanics the Berry phase is defined as a phase ac-
cumulated by the wave function during the adiabatic evolution

around a closed path in the parameter space denoted by ~s. This
phase can be obtained by integrating the Berry connection:

Aμ ¼ ihψj∂μjψi [1]

along this path (1). Here to shorten notations we define ∂μ ≡ ∂sμ .
The vector ~s stands for an arbitrary set of parameters which
change during the adiabatic evolution. These can be a coordinate
of a particle, its momentum, magnetic or electric field, vector po-
tential, pressure, volume, a coupling to some external potential,
and so force. From the definition above it is clear that the Berry
phase has a purely geometric interpretation. Together with the
Berry connection Aμ (analogous to the vector potential in the
parameter space), one defines the Berry curvature (analogous
to the magnetic field):

Fμλ ¼ ∂μAλ − ∂λAμ: [2]

From the Stokes theorem it follows that the Berry phase along
some closed path can be found by integrating the Berry curvature
over the area enclosed by this path. A nontrivial Berry phase—
i.e., the phase not equal to 0 or π—and a nonzero Berry curvature
are in general associated with a broken time-reversal symmetry,
because otherwise all wave functions can be made real (2).

The Berry curvature is directly related to the geometric tensor
(3) introduced to describe manifolds of adiabatically connected
wave functions ψð ~sÞ:

χμλ ¼ hψj ∂
←

μ∂λjψi − hψj ∂
←

μjψihψj∂λjψi [3]

It is straightforward to check that Fμλ ¼ −2ℑ½χμλ�, while
gμλ ¼ ℜ½χμλ� defines the Riemannian metric tensor associated

with the same manifold. The Riemann curvature associated with
the above metrics as well as the components of the geometric ten-
sor can serve as observable independent measures of singularities
like phase transitions (4). The geometric tensor can be extended
to mixed states by taking the statistical average of the geometric
tensor associated with individual pure states .

The Berry phase and related concepts found multiple applica-
tions in many different quantum and classical systems. In particu-
lar, it underlies theAharonov-Bohm effect; it shows up in transport
in graphene in a quantumHall regime (5); it can emerge in photon
interference of a circularly polarized light (6, 7); it appears in
anomalous quantum Hall effect in magnetic metals (8), in various
magnetoelectric response functions (9), in Thouless pumps (10,
11) and many other phenomena, including various forms of so-
lid-state related topological phenomena like topological insulators
[see Ref. (12) for a recent review]. Most known applications of the
Berry phase and ways to experimentally measure it rely on exis-
tence of free or nearly free quasi-particles which can independently
interfere affecting transport properties. If the concept of quasi-par-
ticles is ill defined and transport experiments are not feasible, like
in cold atom systems, the Berry phase could not be measured using
traditional approaches.

Results
The main finding of our paper is that in slowly driven isolated
systems the Berry curvature emerges in a linear response of phy-
sical observables to the quench velocity ~v ¼ _~s. Specifically we
show that if the quench velocity ~v is aligned along the λ direction
in the parameter space then measuring the response of the gen-
eralized force along the μ-direction: Mμ ¼ −hψðtf Þj∂μHjψðtf Þi
gives the λμ component of the Berry curvature:

Mμ ¼ constþFμλvλ þ Oðv2Þ: [4]

where we used the Einstein convention of summation over re-
peated indexes. The constant term gives the value of the general-
ized force in the adiabatic limit. This result is very remarkable
since it shows that even without dissipation, the leading nonadia-
batic response of a quantum system is local in time. Indeed it is
determined by the instantaneous velocity and the instantaneous
matrix elements and the instantaneous spectrum. We sketch the
details of the derivation of Eq. 4 in the Methods section. Here we
only point that this result is valid if either of the three conditions
are met: (i) the velocity ~v is turned on smoothly, (ii) the system is
prepared initially in a state with a large gap, (iii) there is a weak
dephasing mechanism in the system and the time of experiment is
longer than the dephasing time. The first two conditions imply
that the system is not excited at the initial time of the evolution,
and the last condition implies that even if there are small excita-
tions in the system, they come with a random phase. Note that the
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dephasing does not have to be due to external noise, it can be due
to averaging of over different experimental runs with slightly fluc-
tuating durations. The Eq. 4 applies to both gapless and gapped
systems at either zero or at finite temperatures. It can be used for
a single particle and for an interacting many-body system in a
thermodynamic limit. However, we need to keep in mind that
the Berry curvature is a susceptibility, in particular it can be ex-
pressed through the nonequal time correlation functions: (1)

Fμλ ¼ −i
Z

∞

0

dt th½∂μHðtÞ; ∂λHð0Þ�i0: [5]

Here ∂μHðtÞ stands for the operator ∂μH in the Heisenberg re-
presentation with respect to the instantaneous Hamiltonian, ½…�
stands for the commutator, and the subindex 0 means that the
average is taken with respect to the adiabatically evolved state
(e.g., the instantaneous ground state if the system is initially pre-
pared at zero temperature). As usual, we assume that the ener-
gies have infinitesimal positive imaginary parts to guarantee the
convergence of the integral above. In low dimensional gapless
systems or near phase transitions, the Berry curvature can di-
verge. Then the linear response theory breaks down and the de-
pendence MμðvλÞ can become nonanalytic. In this work we will
not be concerned with these quite special situations. Let us point
out that in large systems if we are dealing with extensive cou-
plings, the Berry curvature is also extensive. Therefore possible
nonextensive number of degeneracies of the ground state does
not affect the result Eq. 4. However, these degeneracies can af-
fect topological protection of the integer Chern numbers asso-
ciated with the Berry curvature which we discuss below. Let us
also point out that Eq. 4 implies that the nonvanishing linear re-
sponse coefficient indicates a broken time-reversal symmetry in
the Hamiltonian (possibly by the coupling sμ). This situation is
opposite to that in the imaginary time dynamics, where the linear
response for a similar protocol reveals the symmetric part of the
geometric tensor (13). The latter is nonsensitive to the time-
reversal symmetry.

The Eq. 4 can be interpreted as a Hall effect in the abstract
parameter space. Indeed then vλ can be interpreted as a driving
current in λ-direction. The response Mμ is analogous to the elec-
tric field in the transverse direction and then Fλμ is the analogue
of the Hall resistance. Conversely by sλ we can understand the
electric field component in the x-direction (which can be viewed
as a rate of change of the x-component of the vector potential).
Similarly by sμ we can understand the vector potential along
y-direction. Then the corresponding generalized force Mμ ¼
−∂μH is proportional to the y-component of the current. Then
up to the coupling e2∕h the Berry curvature is given by the Hall
conductivity and Eq. 4 reduces to the well-known result (see
Methods for more details). Different variations of Eq. 4 also ap-
peared earlier in other particular contexts (11, 14).

The proposed method of finding the Berry curvature has an-
other significant advantage over traditional interference based
methods. Namely, it does not require strict adiabaticity, which
is nearly impossible to achieve in large interacting systems. Con-
trary, the applicability of the linear response regime, where Eq. 4
is valid, only requires that intensive quantities like the magneti-
zation per unit volume remain small. Therefore, there are no dif-
ficulties related to taking the thermodynamic limit with possible
exceptions near singularities like critical points where the Berry
curvature can diverge. The relation (4) gives a clear route for
measuring the Berry curvature and consequently the Berry con-
nection and the Berry phase in generic systems. A possible pro-
cedure can consist of evolving the system initially prepared in the
ground state by quenching some tuning parameter sλ smoothly in
time. Then at the time t ¼ 0 corresponding to the Hamiltonian of
interest, one measures the generalized force corresponding to a
different parameter sμ : Mμ. Repeating these measurements at

different velocities one can extract the slope of MμðvλÞ, which
coincides with the Berry curvature. One can repeat the same se-
quence at different values of ~s confined within some closed area
of the parameter space and evaluate the Berry phase using the
Stokes theorem. The relation (4) also extends to weak continuous
measurements. Then the Berry curvature can be extracted from
the linear in velocity correction to Mμ.

If the parameter field ~s lies on an arbitrary compact manifold
(surface) S like a sphere or a torus, then the integral over the
Berry curvature for a given state jψi forms a topological integer
invariant known as the first Chern number:

ch1ðjψiÞ ¼
1

2π

Z
S
dSμλFμλ: [6]

where dSμλ is an area form element in the parameter space. To
observe the quantization it is important that the gap separating
the ground state from the rest of the excitations never closes on
this surface. The regions in the parameter space, where there are
such nodes on the surface, define the crossover between different
quantized plateaus. Thus Eq. 4 allows one to experimentally or
numerically map the manifold of degeneracies in the ground state
wave function. We will illustrate this point below using an exam-
ple of an anisotropic spin chain. If in addition the surface can be
represented as an invariant closed manifold (such thatFμλ is con-
stant on this manifold) then Eq. 4 gives a generalization of the
integer quantum Hall effect to the abstract parameter space with
Fμλ being a product of a factor of 2π and an integer divided by
the surface area. This setup becomes analogous to the Thouless
pump (10, 11) with the difference that the quench parameter and
the observable are arbitrary and not necessarily related to the
particle transport.

Examples
To illustrate how this idea works we will use several specific ex-
amples gradually increasing their complexity. First let us consider
a spin one-half particle in the external magnetic field described by
the Hamiltonian:

H ¼ − ~h· ~σ; [7]

where ~σ stands for Pauli matrices. It is well known (15) that
if we choose a path where hz is constant, hx ¼ h⊥ cosϕ; hy ¼
h⊥ sinϕ and the angle ϕ changes by 2π (see Fig. 1) then the
ground state of the spin acquires the Berry phase:

Fig. 1. Two ways of measuring the Berry phase for a spin in a magnetic field:
(i) Traditional (Left) where an external parameter adiabatically changes along
a closed path; e.g., by varying the angle ϕ. Then the Berry phase can be mea-
sured through the interference signal between the original and the adiaba-
tically evolved spins. (ii) Dynamical (Right). In this setup one changes an
external parameter hx linearly in time with some velocity vx and measures
the response of the magnetizationmyðvxÞ. The linear slope of the latter gives
the Berry curvature Fyx (see Eq. 4).
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γ ¼ πð1 − cosðθÞÞ ¼ π

�
1 −

hz
h

�
[8]

A conventional way of measuring the Berry phase in this setup
will involve adiabatic motion of the spin around this path and
looking into a signal sensitive to the interference of the rotated
and the original spins.

Using Eq. 4, one can obtain the same result in a nonequili-
brium protocol which does not directly involve any interference.
We will illustrate this with a specific setup. First we prepare the
system in the ground state of a magnetic field having a large ne-
gative x-component and fixed z-component at the moment t ¼ t0.
Then we evolve the magnetic field along the x-direction linearly
in time: hxðtÞ ¼ hx þ vxt. At time t ¼ 0 we measure the magneti-
zation along the y-direction: my ¼ hψð0Þjσyjψð0Þi. This problem
is simple enough so that it can be solved analytically using the
Weber functions (16), but the solution is quite involved so we
solve the Schrödinger equation numerically instead. The result
of these simulations for hxðt0Þ ¼ −99.5, hx ¼ hxðt ¼ 0Þ ¼ 0.5
and hz ¼ 1 is shown in Fig. 2 (solid line). The Berry curvature
for this system can be easily computed using an explicit form
of the ground state wave function and Eq. 3. In particular, for
hy ¼ 0 it reads:

Fyx ¼
hz
2h3

¼ hz
2ðh2

x þ h2
z Þ3∕2

[9]

The linear function Fyxvx (dashed line) is in perfect agreement
with the low velocity asymptotic of the exact solution. From this
Berry curvature we can immediately infer the Berry phase along
the circular path by noting the rotational invariance of the system:

γ ¼
Z

2π

0

dϕ
Z

h⊥

0

dη η
hz

2ðh2
z þ η2Þ3∕2 ¼ π

�
1 −

hz
h

�
; [10]

which is of course the correct result. If the rotational symmetry is
broken, one would need to evaluateFyx in a sufficiently dense set
of parameters hx and hy enclosed by the closed path and evaluate
the area integral over the Berry curvature using finite differences.

To get the first Chern number in this example we can use hϕ
and hθ as the external parameters keeping the total magnetic field
fixed. Then a similar quench procedure will result inmϕ ≈Fϕθvθ,
where Fϕθ ¼ 1∕2 sinðθÞ, which after integration over the spheri-
cal surface will result in

ch1 ¼
1

2π

Z
2π

0

dϕ
Z

π

0

dθ
1

2
sinðθÞ ¼ 1. [11]

The quantization unit here is the system’s spin s ¼ 1∕2.
Next we extend the example above to a Heisenberg spin chain

in a magnetic field:

H ¼ −∑
N

j¼1

~h ~σj − J ∑
N−1

j¼1

~σj ~σjþ1; [12]

where N is the chain size. In this setup we will analyze the re-
sponse to rotating magnetic field in the θ direction (see Fig. 1)
fixing the magnitude h ¼ 1:

hxðtÞ ¼ sin
�
v2t2

2π

�
; hzðtÞ ¼ cos

�
v2t2

2π

�
; hyðtÞ ¼ 0.

[13]

This choice of time dependence guarantees that the angular ve-
locity is turned on smoothly and the system is not excited at the
initial moment of evolution. At the point of measurement t ¼ π∕v
the velocity of the θ-component of the magnetic field is exactly v.
As in the previous example we numerically solve the time-depen-
dent Schrödinger equation and evaluate the magnetization along
the y axis: mϕ ¼ ∑jhσ y

j i as a function of the velocity. The slope
Fϕθ must give the Berry curvature, which we compute as a func-
tion of the interaction coupling J.

In order to check the quantization of the first Chern number in
this system, one needs to integrate the extracted value of Fϕθ
over the sphere h ¼ 1. However, in this case it is not necessary
because of the rotational invariance of the interaction. Thus the
integration will result in just the multiplication ofFϕθ by the area
of the sphere, which is 4π. We thus anticipate that Fϕθ is quan-
tized in units of 1∕2 irrespective of the interaction coupling. This
is indeed what we observe (Fig. 3). In the ferromagnetic regime
(J ≥ 0) the Berry curvature is equal to N∕2, which indicates that
the ground state behaves as a collective spin of magnitude
S ¼ N∕2. In the antiferromagnetic regime J is large and negative
such that the system behaves as a spin singlet S ¼ 0 for even N
and as an effective spin 1∕2 for odd N. The transition between
the spin singlet (for even chain) and the maximally polarized state

Fig. 2. Magnetization along the y-axis as a function of the quench velocity
of the x-component of the magnetic field evaluated at hx ¼ 0.5, hy ¼ 0 and
hz ¼ 1. The dashed line is the linear response prediction given by Eq. 4.

Fig. 3. The Berry curvature extracted from numerically evaluating dynami-
cal response of the magnetization of a Heisenberg spin chain to the rotating
magnetic field. The two lines represent chains of the length N ¼ 9 and
N ¼ 10. The quantization plateaus clearly indicate the topological character
of the response. Numerical simulations were done by solving the time-depen-
dent Schrödinger equation with fixed velocity v ¼ 0.1 (see Eqs. 13 and 13).
The Berry curvature was extracted from the transverse magnetization:
Fϕθ ≈myðvÞ∕v.
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occurs through the quantized steps, which reflect the total value
of the spin in the initial state. It is interesting to note that even
though we numerically extracted the slope of magnetization
Fϕθ ≈MyðvÞ∕v from a moderately small velocity v ¼ 0.1, the ac-
curacy of the quantization of plateaus is better than 0.1%.

The example above has still one significant simplification com-
ing from the fact that the magnetization commutes with the Hei-
senberg interaction term. Therefore, the time evolution of the
magnetization is decoupled from the latter. To show that the
quantization of the dynamical response holds in a more generic
setup we will next consider a disordered (and hence nonintegr-
able) Heisenberg chain with the Hamiltonian

H ¼ − ~h∑
N

j¼1

ξj ~σj − J ∑
N−1

j¼1

ηj ~σj ~σjþ1; [14]

where ξj and ηj are random variables, which for concreteness are
both chosen from a box distribution in the interval [0.75,1.25]. We
repeat the same protocol as before—i.e., change the magnetic
field according to Eq. 13—and extract the Berry curvature from
the response of the magnetization to the velocity v. In Fig. 4 we
show the results of such simulations for a chain of length N ¼ 9
with a given realization of disorder. The slopes are extracted from
two different velocities v ¼ 0.1 and v ¼ 0.025. The plot clearly
shows that the quantization of the response persists. At higher
velocity the crossovers between the plateaus are slightly more
rounded and one observes small fluctuations of the numerically
extracted Fϕθ in the plateau regions. At smaller velocity—i.e.,
closer to the linear response regime—these fluctuations are sup-
pressed and we see again nearly perfect quantization.

As a final example we analyze an anisotropic chain:

H ¼ − ~h∑
N

j¼1

~σj − J ∑
N−1

j¼1

ð ~σ⊥
j ~σ⊥

jþ1 þ 0.75σ z
jσ

z
jþ1Þ; [15]

where ~σ⊥
j denotes x; y components of the spins. This chain has

only azimuthal symmetry in the xy plane. In order to get the quan-
tization of the response we thus need to average the Berry cur-
vature over the polar angle of the magnetic field with respect to
the z-axis. If we are taking a weak continuous measurement then
this average is equivalent to the time average. The results of the
numerical simulations for even and odd chains with lengths N ¼
9; 10 are plotted in Fig. 5. To obtain these results we used the

same protocol of changing the magnetic field as in Eq. 13 except
that we performed an additional averaging over the polar angle.
Both chains show clear quantization of the response with
Fϕθ ¼ N∕2 for J ≳ −0.25. But at smaller values of J the behavior
of the response is different. For odd chain the plateaus have very
large fluctuations, while for the even chain the plateaus are per-
fectly defined. We can understand the odd chain result at large
negative J as coming from the double degeneracy of the ground
state where the unpaired spin can be localized on the left or right
edges of the chain (or alternatively degeneracy between sym-
metric and antisymmetric combinations of these spins). In a ro-
tationally invariant system these states are protected by the
symmetry and there are no transitions between them, so the sys-
tem behaves as effectively gapped. In an anisotropic chain this
protection is lost and thus the ground state is not protected,
hence we see no accurate quantization of the plateaus. For the
even chain the intervals between the plateaus correspond to
the regions where the ground state degeneracies cross the inte-
gration surface of constant magnetic field h ¼ 1. By deforming
the shape of the integration surface such that the jumps between
the plateaus become sharp, one can map the precise location of
the degeneracies. Analysis of the microscopic origin of this re-
sponse as well as understanding which plateaus (except for the
trivial ones with Fϕθ∕N ¼ 0; 1∕2) survive in the thermodynamic
limit is beyond the scope of this work.

In the examples above we focused on magnetic systems. But
our analysis goes through if we consider dipoles in a time-depen-
dent electric field or other setups. For isotropic systems the quan-
tized Berry curvature reveals the total spin of the system. On a
more fundamental level this quantization reveals the number of
nonequivalent submanifolds of degeneracies of the ground state
within the integration surface. In the analyzed examples, for illus-
tration purposes we assumed that the g-factor—i.e. the coupling
of spin to the magnetic field—is unity. In real experiments this
quantization of the response can be used for a precision measure-
ment of the g-factor like the ordinary quantum Hall effect is used
for the precision measurement of e2∕h. Quantization of the in-
tegrated Berry curvature can also be used for canceling effects of
random static magnetic fields, which might affect accuracy of di-
rect measurements of the magnetization. These and other poten-
tial applications will be a subject of future investigation.

Fig. 4. Berry curvature extracted from dynamical simulations of the disor-
dered Heisenberg chain (see Eq. 14). The simulations are done for the spin
chain of length N ¼ 9 using the protocol identical to that in Fig. 3 for a par-
ticular realization of the disorder. The two lines represent two different ve-
locities v ¼ 0.1 and v ¼ 0.025. Smaller velocity clearly improves the accuracy
of quantization.

Fig. 5. Berry curvature averaged over the polar angle for the anisotropic
spin chain (see Eq. 15). The simulations are done for spin chains of lengths
N ¼ 9 and N ¼ 10 and the angular velocity v ¼ 0.025. The Inset shows the
result for the even chain in the log scale. Both even and odd chain show
a clearly quantized plateau at J ≳ −0.25 at the value N∕2. The even chain also
shows well-defined plateaus at other integer values. The regions between
the plateaus correspond to the regions where the degeneracies of the
ground state cross the surface h ¼ const.
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Discussion and Conclusions
Our approach allows an interesting possibility of mapping the
Hilbert space topology through quantum dynamics. By measuring
the Berry curvature, one can experimentally analyze topological
properties of the ground states, extract information about their
possible degeneracies, and analyze phase transitions between dif-
ferent topological states. One can also use Berry curvature as a
probe of time-reversal symmetry breaking in complicated sys-
tems; e.g., in biology.

In conclusion, we demonstrated that the Berry curvature can
be measured in generic systems, interacting or not, as a leading
nonadiabatic response of physical observables to quench velocity.
This method does not require stringent adiabatic conditions hard
to achieve in large systems. While in this paper we focused on the
quantum dynamics close to the ground state, our main result
Eq. 4 applies to the mixed states as well. We illustrated applic-
ability of this method by numerically solving the time-dependent
Schrödinger equation for a single spin and different interacting
spin chains. In all the cases we found quantization of the dyna-
mical response in agreement with theoretical expectations. This
quantization can be interpreted as a dynamical quantum Hall ef-
fect. Our findings also reveal deep connections between quantum
dynamics and equilibrium geometric properties associated with
the adiabatically connected wave functions. We believe that these
findings can be used in a variety of systems to experimentally ana-
lyze the valuable geometrical properties of the interacting sys-
tems without the need to perform sensitive and not always
feasible interference experiments.

Methods
Sketch of the Derivation of Eq. 4. Derivation of Eq. 4 is rather simple. It relies
on the adiabatic perturbation theory; i.e., perturbation theory in the instan-
taneous basis (17, 18). For linear quenches one finds that the transition am-
plitude to the nth eigenstate of the final Hamiltonian is (18)

an≈ivλ
hnj∂λj0i
ðεn − ε0Þ

e−iΘn0

����
λf

λi

¼ −ivλ
hnj∂λHj0i
ðεn − ε0Þ2

e−iΘn0

����
λf

λi

; [16]

where Θn0 is the full phase difference (including the dynamical and the Berry
phases) between the nth and the ground instantaneous eigenstates during
time evolution:

Θn0ðλÞ ¼
Z

λf

λ
dλ 0

�
εnðλ 0Þ − ε0ðλ 0Þ

υðλ 0Þ − iðAnðλ 0Þ −A0ðλ 0ÞÞ
�
: [17]

If the initial state has a large gap or if the protocol is designed in such a way
that the initial evolution is adiabatic, then Eq. 16 takes a particularly simple
form:

an ≈ −ivλ
hnj∂λHj0i
ðεn − ε0Þ2

����
λf

[18]

The contribution of the initial term in Eq. 16 to the expectation value of the
off-diagonal observables can be additionally suppressed by the fast oscillat-
ing phase Θn0. This suppression will happen even if by magnitude this con-
tribution is comparable to the final term (18). Let us note that in order to
obtain this result from Eq. 19, in Ref. (18) one needs to perform an additional
phase transformation to undo the transformations given by Eqs. 6 and (14) of
that work. Let us also point that Eq. 18 is equivalent to Eq. 2.10 in Ref. (11) for
a particular choice of parameters. However, as we discuss above, this result is
only valid provided that the initial term in a more general Eq. 16 is unim-
portant.

From Eq. 18 it is straightforward to derive Eq. 4:

Mμ ¼ hψj − ∂μHjψi ≈ h0j − ∂μHj0i

þ ivλ∑
n≠0

h0j∂μHjnihnj∂λHj0i − μ ↔ λ

ðεn − ε0Þ2
[19]

It is easy to check that the second term in this equation is equivalent
to Eq. 4.

Application of Eq. 4 to the Integer Quantum Hall Effect. He we elaborate on
that the quantum Hall effect can be understood as a particular application
of Eq. 4. This discussion will closely follow the first chapter of Ref. (19).

The Hall current in the ordinary setup can be derived using the adiabatic
transport theory combined with the Kubo formula. To compute the Hall con-
ductivity one usually applies the adiabatic formulas similar to those derived in
Appendix A, to some in general interacting HamiltonianHðAxðtÞ; AyðtÞÞ on a
torus of size Lx × Ly . The Hamiltonian H depends on the vector potential of
the fixed external magnetic field Amag and on slowly varying perturbations θ
and ϕ,

AxðtÞ ¼ Amag
x þ ϕ∕Lx; [20]

AyðtÞ ¼ Amag
y þ θ∕Ly; [21]

The current operators Ix and Iy are given by

Ix ¼
∂H
∂ϕ

; Iy ¼
∂H
∂θ

: [22]

One imposes the external Hall voltage ε by varying the parameter θ in time. In
particular, from ∂tAy ¼ Ey and −LyEy ¼ ε we see that ∂tθ ¼ ε. Thus we can
view the Hall voltage as the rate of change of the parameter θ. Explicitly ap-
plying the expressions for the transition amplitudes derived in the previous
appendix, we get that in the linear response

hIxi ¼ i∑
m≠0

h0jIxjmihmjIyj0i − x ↔ y

ðεm − ε0Þ2
_θ: [23]

where j0i is an instantaneous ground state. The first term in the right-hand
side of this equation is exactly the curvature of the Berry phase in the space of
parameters θ and ϕ:

Fθϕ ¼ i
�
h0j∂

←

θ∂ϕj0i − h0j∂
←

ϕ∂θj0i
�

[24]

Averaging the Berry curvature over θ, ϕ is equivalent to the evaluation of
the (first) Chern character:

ch1ðj0iÞ ¼
1

2π

Z
T 2

dθdϕFθϕ; [25]

which is an integer number. This result gives the well-known topological
quantization condition of the Hall conductivity:

σH ¼ e2

2πh
ch1ðj0iÞ [26]

Note added. After this work was complete we became aware of a recent
paper (20), where partially overlapping results were obtained.
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