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Abstract

Geometrical ideas have played a crucial role in the development of Physics.
Einstein’s General Theory of Relativity is a classic example of a theory
which is fully geometric. It can be shown also that Gauge Field Theories
have a deep geometric meaning, where the potentials of the gauge field
play the role of a connection over some fibre bundles, and the gauge field
associated with this potential is simply the curvature of the connection.
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1 Introduction
Einstein’s biggest dream was to geometrize all the fundamental forces of na-
ture. The idea of geometrization is reflected in his General Theory of Relativity
(GTR) where gravitation is described as a purely geometric effect through his
famous equation

Gµν = 8πGTµν, (1)
whereGµν is a geometric object describing the geometry of space-time and Tµν

is the energy-momentum tensor.
One of the consequences of the space-time being curved is the introduction

of another derivative, the covariant derivative, which reduces to the ordinary
derivative in the limit of a flat space-time

∂µX
ν −→ ∇µX

ν = ∂µX
ν + Γν

γµX
γ, (2)

where Γν
γµ is an object called Riemann connection and it plays the role of the

gravitational forces in the GTR.
In the subsequent years after constructing the GTR, Einstein tried to con-

struct a unified field theory for all the forces of nature. In this theory mat-
ter and forces would be manifestations of geometric objects, but he failed to
achieve such unification for more than 30 years.

2 Geometry of Gauge Fields
The idea of gauging was first proposed by Weyl while he was trying to in-
corporate electromagnetism into geometry using space-time dependent (local)
scale transformations (see [2]). Namely, at a neighbouring point the scale is
changed from 1 to 1 + Sµ dx

µ. Hence, a space-time dependent function will
change to

f(x) −→ f+
[

(∂µ + Sµ)f
]

dxµ. (3)
Weyl tried to derive electromagnetism by requiring the invariance under this
transformation and by identifying the scale factor with the vector potential:
Sµ → Aµ. His initial attempt was not successful.

The idea of gauge transformations emerged again after the advent of mod-
ern quantum mechanics. In quantum mechanics, the wave function describing
any physical system can be transformed according to

ψ −→ eiαψ, (4)

where α is an arbitrary constant phase. The fundamental equations of quan-
tum mechanics are invariant under this transformation. For example, the La-
grangian of a free Dirac field

L = ψ(i/∂−m)ψ, /∂ = γµ∂µ (5)

will remain the same under transformations (4).
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Let’s turn now to the case when the phase transformations (4) are local, i.e,
space-time-dependent α. Our Lagrangian (5) will no longer be invariant. The
presence of a space-time derivative in the Lagrangian will contribute a term
which will spoil the gauge symmetry. This situation reminds us of the GTR
where the transition from flat space-time to a curved one results in the intro-
duction of a covariant derivative. This reasoning motivates us to introduce a
covariant derivative (and a gauge connection ) in our theory of gauge fields. The
Lagrangian (5), when written in terms of this derivative, will remain invariant
under local gauge transformations.

Before proceeding further, let’s first study the structure of the transforma-
tions (4). In the local case they will have the form:

ψ(x) −→ eiα(x)ψ(x). (6)

This (one-parameter) Abelian group of unitary transformations is called U(1).
The transformations represent rotations in the internal space of the fields. These
rotations are space-time dependent, i.e., the rotation angle will change from
one point to another in space-time. It is worth mentioning that these rotations
have nothing to do with ordinary rotations in R

3. We can imagine that at each
point of our space-time there is a circle and rotations around these circles are
represented by the transformations (6) (see [3]).

Now it is the time to introduce a very useful concept from differential ge-
ometry. From the above discussion we have a base manifold M4 (Minkowski
space-time) together with a circle at each point (fibres S). Both the base mani-
fold together with the fibres form what is called a fibre bundle; we will call this
fibre bundle M4S. The covariant derivative is

Dµ = ∂µ + iAµ, (7)

whereAµ plays the role of a connection over the fibre bundle. The Lagrangian
(5) in terms of the covariant derivative reads

L = ψ(i /D−m)ψ, /D = γµDµ (8)

which describes a Dirac field interacting with the electromagnetic field. To add
a kinetic term describing the free electromagnetic field in this Lagrangian we
can think about the curvature of the connection Aµ. In GTR the curvature of
the connection Γγ

νµ is given by the Riemann tensor ([1])

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γ

ρ
µλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ. (9)

This suggests that we choose as a curvature of our gauge connection Aµ the
form

Fµν = ∂µAν − ∂νAµ. (10)
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The complete Lagrangian of a Dirac field interacting with an electromag-
netic field can now be written as ([4])

L = ψ(i /D−m)ψ−
1

4
FµνF

µν. (11)

3 Conclusion
Our discussion so far considered only the simplest case of a one-parameter
group U(1) which is the gauge group of electromagnetism. The extension
to include other gauge fields is done via Yang-Mills theory. The gauge po-
tentials in this case will carry another index beside the space-time one. The
gauge groups in the Yang-Mills theory are no longer one-parameter (hence,
non-Abelian) and the fibre bundle structure will be more rich. It is worth men-
tioning that GTR is another example of a gauge theory where the gauge group
is the group of all diffeomorphisms on the space-time manifold. The study of
the connections between space-time symmetries and gauge symmetries may
in the end lead to a unified theory for all the fundamental interactions of na-
ture.
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